Cross-presentation of tumor antigens by bone marrow–derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression

Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1070-1077 ◽  
Author(s):  
Eduardo M. Sotomayor ◽  
Ivan Borrello ◽  
Frédérique-Marie Rattis ◽  
Alex G. Cuenca ◽  
Jacob Abrams ◽  
...  

Tumor antigen-specific T-cell tolerance may limit the efficacy of therapeutic cancer vaccines. Direct presentation of antigens by tumor cells incapable of providing adequate costimulation to tumor-specific T cells has been suggested as the basis for this unresponsiveness. Using parent-into-F1 bone marrow (BM) chimeras, this study unambiguously demonstrates that the induction of this tolerant state requires T-cell recognition of tumor antigen presented by BM-derived antigen-presenting cells (APCs), not tumor cells themselves. In the absence of host APC presentation, tumor-specific T cells remained functional, even in the setting of antigen expressed by B-cell lymphomas residing in secondary lymphoid tissues. The intrinsic APC capacity of tumor cells has therefore little influence over T-cell priming versus tolerance, a decision that is regulated at the level of host APCs.

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 549-561 ◽  
Author(s):  
Angelo A. Cardoso ◽  
Mark J. Seamon ◽  
Hernani M. Afonso ◽  
Paolo Ghia ◽  
Vassiliki A. Boussiotis ◽  
...  

Abstract In contrast to other neoplasms, antigen-specific autologous cytolytic T cells have not been detected in patients with human pre-B–cell leukemias. The absence of efficient B7 family (B7-1/CD80; B7-2/CD86) -mediated costimulation has been shown to be a major defect in tumor cells' capacity to function as antigen-presenting cells. We show here the generation of autologous anti–pre-B–cell leukemia-specific cytolytic T-cell lines from the marrows of 10 of 15 patients with pre-B–cell malignancies. T-cell costimulation via CD28 is an absolute requirement for the generation of these autologous cytolytic T cells (CTL). Although costimulation could be delivered by either bystander B7 transfectants or professional antigen-presenting cells (indirect costimulation), optimal priming and CTL expansion required that the costimulatory signal was expressed by the tumor cell (direct costimulation). These anti–pre-B–cell leukemia-specific CTL lysed both unstimulated and CD40-stimulated tumor cells from each patient studied but did not lyse either K562 or CD40-stimulated allogeneic B cells. Cytolysis was mediated by the induction of tumor cell apoptosis by CD8+ T cells via the perforin-granzyme pathway. Although we were able to generate anti–leukemia-specific CTL from the bone marrow, we were unable to generate such CTL from the peripheral blood of these patients. These studies show that antigen-specific CTL can be generated from the bone marrow of patients with pre-B–cell leukemias and these findings should facilitate the design of adoptive T-cell–mediated immunotherapy trials for the treatment of patients with B-cell precursor malignancies.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 549-561 ◽  
Author(s):  
Angelo A. Cardoso ◽  
Mark J. Seamon ◽  
Hernani M. Afonso ◽  
Paolo Ghia ◽  
Vassiliki A. Boussiotis ◽  
...  

In contrast to other neoplasms, antigen-specific autologous cytolytic T cells have not been detected in patients with human pre-B–cell leukemias. The absence of efficient B7 family (B7-1/CD80; B7-2/CD86) -mediated costimulation has been shown to be a major defect in tumor cells' capacity to function as antigen-presenting cells. We show here the generation of autologous anti–pre-B–cell leukemia-specific cytolytic T-cell lines from the marrows of 10 of 15 patients with pre-B–cell malignancies. T-cell costimulation via CD28 is an absolute requirement for the generation of these autologous cytolytic T cells (CTL). Although costimulation could be delivered by either bystander B7 transfectants or professional antigen-presenting cells (indirect costimulation), optimal priming and CTL expansion required that the costimulatory signal was expressed by the tumor cell (direct costimulation). These anti–pre-B–cell leukemia-specific CTL lysed both unstimulated and CD40-stimulated tumor cells from each patient studied but did not lyse either K562 or CD40-stimulated allogeneic B cells. Cytolysis was mediated by the induction of tumor cell apoptosis by CD8+ T cells via the perforin-granzyme pathway. Although we were able to generate anti–leukemia-specific CTL from the bone marrow, we were unable to generate such CTL from the peripheral blood of these patients. These studies show that antigen-specific CTL can be generated from the bone marrow of patients with pre-B–cell leukemias and these findings should facilitate the design of adoptive T-cell–mediated immunotherapy trials for the treatment of patients with B-cell precursor malignancies.


Blood ◽  
2009 ◽  
Vol 113 (15) ◽  
pp. 3475-3484 ◽  
Author(s):  
Josef Kurtz ◽  
Forum Raval ◽  
Casey Vallot ◽  
Jayden Der ◽  
Megan Sykes

Abstract Although the inhibitory receptor CTLA-4 (CD152) has been implicated in peripheral CD4 T-cell tolerance, its mechanism of action remains poorly defined. We analyzed mechanisms of CD4 cell tolerance in a model of tolerance induction involving establishment of mixed hematopoietic chimerism in recipients of fully MHC-mismatched allogeneic bone marrow cells with anti-CD154 mAb. Animals lacking CD80 and CD86 failed to achieve chimerism. We detected no T cell–intrinsic requirement for CD28 for chimerism induction. However, a CD4 T cell–intrinsic signal through CTLA-4 was shown to be essential within the first 48 hours of exposure to alloantigen for the establishment of tolerance and mixed chimerism. This signal must be provided by a recipient CD80/86+ non–T-cell population. Donor CD80/86 expression was insufficient to achieve tolerance. Together, our findings demonstrate a surprising role for interactions of CTLA-4 expressed by alloreactive peripheral CD4 T cells with CD80/86 on recipient antigen-presenting cells (APCs) in the induction of early tolerance, suggesting a 3-cell tolerance model involving directly alloreactive CD4 cells, donor antigen-expressing bone marrow cells, and recipient antigen-presenting cells. This tolerance is independent of regulatory T cells and culminates in the deletion of directly alloreactive CD4 T cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2392-2392
Author(s):  
Hongwei Wang ◽  
Fengdong Cheng ◽  
P. Horna ◽  
I.V. Suarez ◽  
Jian Wu ◽  
...  

Abstract Tumor-antigen-specific T-cell tolerance imposes a significant barrier to the development of effective therapeutic cancer vaccines. Bone marrow-derived antigen presenting cells (APCs) are critical in the induction of this unresponsive state. The requirement for APCs in tolerance induction, together with their well-known role in priming T-cell antitumor responses place APCs at the crossroads of immune activation versus immune tolerance and points to manipulation of these cells as an enticing strategy to modulate T-cell responses against tumors. Identification of the intracellular mechanisms by which APCs induces either T-cell outcome represents therefore a critical step to better understand and overcome tumor-induced immune tolerance. Histones tail plays an important role in modulation of gene transcription. Emerging evidence suggest that inhibition of hystone deacetylases (HDAC) increases the expression of inflammatory genes. Given that the inflammatory status of the APC at the time of antigen presentation is central in determining T-cell priming versus T-cell tolerance, we evaluated the effects of the HDAC inhibitor LAQ842 (Novartis Pharmaceutical Inc.) on APC function and regulation of antigen-specific CD4+ T-cell responses. First, treatment of peritoneal elicited macrophages (PEM) or bone marrow derided dendritic cells (DCs) with increasing concentrations of LAQ842 resulted in enhanced acetylation of hystones H-2A, H-2B, H3 and H4. Analysis of the expression of MHC class molecules and co-stimulatory molecules revealed a significant increase in B7.2 and CD40 in LAQ842-treated APCs as compared to untreated APCs. Utilizing multi-template RNA probes and ELISA we found that LAQ842-treated APCs produce enhanced levels of several inflammatory mediators such as IL-1a, IL-1b, IL-6, TNF-a and RANTES relative to untreated APCs. Similarly, in response to LPS-stimulation, LAQ842-treated APCs produce significant higher levels of the pro-inflammatory cytokine IL-12 but reduce production of the anti-inflammatory cytokine IL-10 as determined by RT-PCR and ELISA. Furthermore, by chromatin immune precipitation (CHIP) assays we found that LAQ842-treated APCs display an increased acetylation of histones associated with the IL-12 promoter but a diminished acetylation of histones at the IL-10 promoter in response to LPS stimulation. Next, we evaluated whether the inflammatory APCs induced by LAQ842 were capable of effectively present antigen and prime productive antigen-specific T-cell responses. In vitro treatment of PEM or DCs with increasing concentrations of LAQ842 resulted in an enhanced presentation of HA-peptide to naïve CD4+ T cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA). Indeed, these clonotypic T cells display an enhanced HA-specific proliferation, IL-2 and IFN-gamma production relative to clonotypic T cells that encountered HA-antigen on untreated APCs. More importantly, LAQ842-treated APCs were able to restore the responsiveness of tolerant CD4+ T-cells isolated from lymphoma bearing hosts. By demonstrating that HDAC inhibitor induces inflammatory APCs capable of restoring the responsiveness of tolerant T-cells, our studies have unveiled a previously unknown immunological effect of these agents and have broadened their clinical scope as promising adjuvants in cancer immunotherapy.


1998 ◽  
Vol 187 (10) ◽  
pp. 1555-1564 ◽  
Author(s):  
Adam J. Adler ◽  
David W. Marsh ◽  
Gregory S. Yochum ◽  
James L. Guzzo ◽  
Ankesh Nigam ◽  
...  

T cell tolerance to parenchymal self-antigens is thought to be induced by encounter of the T cell with its cognate peptide–major histocompatibility complex (MHC) ligand expressed on the parenchymal cell, which lacks appropriate costimulatory function. We have used a model system in which naive T cell receptor (TCR) transgenic hemagglutinin (HA)-specific CD4+ T cells are adoptively transferred into mice expressing HA as a self-antigen on parenchymal cells. After transfer, HA-specific T cells develop a phenotype indicative of TCR engagement and are rendered functionally tolerant. However, T cell tolerance is not induced by peptide–MHC complexes expressed on parenchymal cells. Rather, tolerance induction requires that HA is presented by bone marrow (BM)–derived cells. These results indicate that tolerance induction to parenchymal self-antigens requires transfer to a BM-derived antigen-presenting cell that presents it to T cells in a tolerogenic fashion.


2020 ◽  
Vol 4 (12) ◽  
pp. 2595-2605 ◽  
Author(s):  
Ole Audun W. Haabeth ◽  
Kjartan Hennig ◽  
Marte Fauskanger ◽  
Geir Åge Løset ◽  
Bjarne Bogen ◽  
...  

Abstract CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow–resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.


2021 ◽  
Author(s):  
Ryosuke Hiwa ◽  
Hailyn V. Nielsen ◽  
James L. Mueller ◽  
Julie Zikherman

ABSTRACTThe NR4A family of orphan nuclear receptors (Nr4a1-3) plays redundant roles upstream of Foxp3 to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to isolate the functions of this family in other immune cells. Here we take advantage of a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1−/− Nr4a3−/− (DKO) bone marrow develop autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely wild-type origin. This disease differs qualitatively from that seen with Treg-deficiency and is B cell-extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional and phenotypic features of anergy accumulate in chimeric mice. Despite this, DKO T cells exhibit enhanced IL-2 production, implying a cell-intrinsic role for the NR4A family in peripheral T cell tolerance. These studies reveal roles for the NR4A family in multiple layered T cell tolerance mechanisms and demonstrate that each is essential to preserve immune homeostasis.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 41-48 ◽  
Author(s):  
AA Cardoso ◽  
JL Schultze ◽  
VA Boussiotis ◽  
GJ Freeman ◽  
MJ Seamon ◽  
...  

Abstract Even if neoplastic cells express tumor associated antigens they still may fail to function as antigen presenting cells (APC) if they lack expression of one or more molecules critical for the induction of productive immunity. These cellular defects can be repaired by physiologic activation, transfection, or fusion of tumor cells with professional APC. Although such defects can be repaired, antitumor specific T cells may still fail to respond in vivo if they may have been tolerized. Here, human pre-B cell acute lymphoblastic leukemia (pre-B ALL) was used as a model to determine if primary human tumor cells can function as alloantigen presenting cells (alloAPC) or alternatively whether they induce anergy. In the present report, we show that pre-B cell ALL express alloantigen and adhesion molecules but uniformly lack B7–1 (CD80) and only a subset express B7–2 (CD86). Pre-B ALL cells are inefficient or ineffective alloAPC and those cases that lack expression of B7–1 and B7–2 also induce alloantigen specific T- cell unresponsiveness. Under these circumstances, T-cell unresponsiveness could be prevented by physiologic activation of tumor cells via CD40, cross-linking CD28, or signaling through the common gamma chain of the interleukin-2 receptor on T cells. Taken together, these results suggest that pre-B ALL may be incapable of inducing clinically significant T-cell-mediated antileukemia responses. This defect may be not only due to their inability to function as APC, but also due to their potential to induce tolerance. Attempts to induce clinically significant antitumor immune responses may then require not only mechanisms to repair the antigen presenting capacity of the tumor cells, but also reversal of tolerance.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3390-3397 ◽  
Author(s):  
Laurent Burnier ◽  
François Saller ◽  
Linda Kadi ◽  
Anne C. Brisset ◽  
Rocco Sugamele ◽  
...  

Abstract Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6−/− mice received allogeneic non–T cell–depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6−/− recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6−/− recipients' liver. When mice received 0.5 × 106 allogeneic T cells with T cell–depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6−/− than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6−/− T-cell proliferation. We therefore assessed the response of WT or Gas6−/− ECs to tumor necrosis factor-α. Lymphocyte transmigration was less extensive through Gas6−/− than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2391-2391
Author(s):  
Hongwei Wang ◽  
Aung Naing ◽  
Fengdong Cheng ◽  
Pedro Horna ◽  
Ildelfonso Suarez ◽  
...  

Abstract Professional antigen-presenting cells (APCs) play an important role in the initiation of antigen-specific T-cell responses. The demonstration that these cells are also required for the induction of T-cell tolerance, placed APCs at the crossroads of immune activation versus immune tolerance. Recent studies have demonstrated that the inflammatory status of the APC at the time of antigen presentation is the central determinant of T-cell priming versus T-cell tolerance. As such, therapeutic induction of inflammatory APCs might override immune tolerance and enhance the efficacy of immunotherapeutic strategies targeting hematologic tumors. Lenalidomide (CC5013) is a thalidomide analogue with immunomodulatory properties. Phase I and Phase II clinical trials in patients with myelodysplastic syndrome (MDS) have shown high frequency of erythropoietic responses, particularly in patients with 5q31 deletion associated with emergence of polyclonal lymphoid infiltrate in responding patient bone marrows. This observation raised the question as to whether immunological mechanism(s) may mediate, at least in part, the beneficial effect of CC5013 in patients with MDS. To gain further insight into the effects of Lenalidomide on APC’s function and regulation of antigen-specific CD4+ T-cell responses, we treated peritoneal elicited macrophages (PEM) and bone marrow-derived dendritic cells (DCs) with escalating concentration of Lenalidomide in vitro. Enhanced expression of both B7.1 and B7.2 co-stimulatory molecules was observed in Lenalidomide-treated APCs relative to untreated APCs. No difference in the expression of MHC class II molecules or CD40 was detected. Assessment of cytokine production by ELISA showed that Lenalidomide-treated APCs produce higher levels of TNF-a, IL-6 and IL-10 in response to LPS stimulation as compared to untreated APCs. Next, we evaluated the ability of Lenalidomide-treated APCs to present cognate antigen to naïve and tolerant CD4+ T-cells specific for a MHC class II restricted epitope of influenza hemagglutinin (HA). We found that treatment of either PEM or DC with low doses of Lenalidomide (range: 1.5–12.5 uM) significantly enhanced their antigen-presenting capabilities leading to effective priming of naïve CD4+ T-cells confirmed by their increased production of IL-2 and IFN-gamma in response to cognate antigen. Taken together, our results shows that by inducing inflammatory APCs, Lenalidomide directs the outcome of antigen-specific T-cell responses. Furthermore, they have broadened the scope of this drug as a promising adjuvant in cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document