Interleukin-5 inhibits translocation of Bax to the mitochondria, cytochrome c release, and activation of caspases in human eosinophils

Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2239-2247 ◽  
Author(s):  
Grant Dewson ◽  
Gerald M. Cohen ◽  
Andrew J. Wardlaw

The apoptosis and subsequent clearance of eosinophils without histotoxic mediator release is thought to be crucial in the resolution of airway inflammation in asthma. Interleukin-5 (IL-5) is a potent suppressor of eosinophil apoptosis. The mechanism by which IL-5 inhibits spontaneous eosinophil apoptosis was investigated. Freshly isolated eosinophils constitutively expressed the conformationally active form of Bax in the cytosol and nucleus. During spontaneous and staurosporine-induced apoptosis, Bax underwent a caspase-independent translocation to the mitochondria, which was inhibited by IL-5. Eosinophil apoptosis was associated with the release of cytochrome c from the mitochondria, which was also inhibited by IL-5. IL-5 and the cell-permeable caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (z-VAD.fmk), prevented phosphatidylserine (PS) externalization, although only IL-5 inhibited loss of mitochondrial membrane potential (ΔΨm). Peripheral blood eosinophils endogenously expressed “initiator” caspase-8 and -9, and “effector” caspase-3, -6, and -7. Spontaneous eosinophil apoptosis was associated with processing of caspase-3, -6, -7, -8, and -9. IL-5 and z-VAD.fmk prevented caspase activation in spontaneous apoptosis. The results suggest that spontaneous eosinophil apoptosis involves Bax translocation to the mitochondria, cytochrome crelease, caspase-independent perturbation of the mitochondrial membrane, and subsequent activation of caspases. IL-5 inhibits spontaneous eosinophil apoptosis at a site upstream of Bax translocation.

Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 761 ◽  
Author(s):  
Roberta Peruzzo ◽  
Ildiko Szabo

Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.


2005 ◽  
Vol 102 (6) ◽  
pp. 1147-1157 ◽  
Author(s):  
Torsten Loop ◽  
David Dovi-Akue ◽  
Michael Frick ◽  
Martin Roesslein ◽  
Lotti Egger ◽  
...  

Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. Conclusion Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Wang ◽  
Chunhui Xia ◽  
Wei Chen ◽  
Yuhang Chen ◽  
Yiyi Wang ◽  
...  

Photodynamic therapy (PDT) is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc- (TαPcZn-) mediated PDT (TαPcZn-PDT) inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE) staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI) double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.


2007 ◽  
Vol 77 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Cristina C. Teixeira ◽  
Aida P. Padron Costas ◽  
Yelena Nemelivsky

Abstract Objective: To determine the role of mitochondria in chondrocyte apoptosis induced by inorganic phosphate (Pi). Materials and Methods: Chondrocytes isolated from the growth plates of chick embryo tibia were treated with Pi in serum-free media; chondrocyte viability, mitochondrial membrane potential, cytochrome c release from mitochondria, caspase 3 activity, endonuclease activity, and DNA fragmentation were investigated. Results: Exposure to Pi for 24 hours induced apoptosis in growth plate chondrocytes through a pathway that involved loss of mitochondrial function, release of cytochrome c into the cytoplasm, increases in caspase 3 and endonuclease activities, and fragmentation of DNA. Conclusions: This study suggests that mitochondria are important players in Pi-induced apoptosis.


2002 ◽  
Vol 282 (6) ◽  
pp. C1290-C1297 ◽  
Author(s):  
Qing Yuan ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

C1297, 2002; 10.1152/ajpcell.00351.2001.We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome cfrom mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with α-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-xL and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.


2003 ◽  
Vol 285 (5) ◽  
pp. G980-G991 ◽  
Author(s):  
Sujoy Bhattacharya ◽  
Ramesh M. Ray ◽  
Mary Jane Viar ◽  
Leonard R. Johnson

Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-α (TNF-α). TNF-α or cycloheximide (CHX) alone did not induce apoptosis in IEC-6 cells. Significant apoptosis was observed when CHX was given along with TNF-α, as indicated by a significant increase in the detachment of cells, caspase-3 activity, and DNA fragmentation. Polyamine depletion by treatment with α-difluoromethylornithine significantly reduced the level of apoptosis, as judged by DNA fragmentation and the caspase-3 activity of attached cells. Apoptosis in IEC-6 cells was accompanied by the activation of upstream caspases-6, -8, and -9 and NH2-terminal c-Jun kinase (JNK). Inhibition of JNK activation prevented caspase-9 activation. Polyamine depletion prevented the activation of JNK and of caspases-6, -8, -9, and -3. SP-600125, a specific inhibitor of JNK activation, prevented cytochrome c release from mitochondria, JNK activation, DNA fragmentation, and caspase-9 activation in response to TNF-α/CHX. In conclusion, we have shown that polyamine depletion delays and decreases TNF-α-induced apoptosis in IEC-6 cells and that apoptosis is accompanied by the release of cytochrome c, the activation of JNK, and of upstream caspases as well as caspase-3. Polyamine depletion prevented JNK activation, which may confer protection against apoptosis by modulation of upstream caspase-9 activation.


Sign in / Sign up

Export Citation Format

Share Document