An IRP-like protein from Plasmodium falciparum binds to a mammalian iron-responsive element

Blood ◽  
2001 ◽  
Vol 98 (8) ◽  
pp. 2555-2562 ◽  
Author(s):  
Mark Loyevsky ◽  
Timothy LaVaute ◽  
Charles R. Allerson ◽  
Robert Stearman ◽  
Olakunle O. Kassim ◽  
...  

Abstract This study cloned and sequenced the complementary DNA (cDNA) encoding of a putative malarial iron responsive element-binding protein (PfIRPa) and confirmed its identity to the previously identified iron-regulatory protein (IRP)–like cDNA from Plasmodium falciparum. Sequence alignment showed that the plasmodial sequence has 47% identity with human IRP1. Hemoglobin-free lysates obtained from erythrocyte-stage P falciparum contain a protein that binds a consensus mammalian iron-responsive element (IRE), indicating that a protein(s) with iron-regulatory activity was present in the lysates. IRE-binding activity was found to be iron regulated in the electrophoretic mobility shift assays. Western blot analysis showed a 2-fold increase in the level of PfIRPa in the desferrioxamine-treated cultures versus control or iron-supplemented cells. Malarial IRP was detected by anti-PfIRPa antibody in the IRE-protein complex fromP falciparum lysates. Immunofluorescence studies confirmed the presence of PfIRPa in the infected red blood cells. These findings demonstrate that erythrocyte P falciparum contains an iron-regulated IRP that binds a mammalian consensus IRE sequence, raising the possibility that the malaria parasite expresses transcripts that contain IREs and are iron-dependently regulated.

1990 ◽  
Vol 87 (20) ◽  
pp. 7958-7962 ◽  
Author(s):  
T. A. Rouault ◽  
C. K. Tang ◽  
S. Kaptain ◽  
W. H. Burgess ◽  
D. J. Haile ◽  
...  

1993 ◽  
Vol 2 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Keerang Park ◽  
Michael E. Pape ◽  
Ki-Han Kim

Tumour necrosis factor (TNF) inhibits the accumulation of acetyl CoA carboxylase (ACC) mRNA by decreasing the rate of ACC gene transcription. The ACC mRNA species found in 30A5 cells are generated from promoter II and TNF inhibits the accumulation of class 2 type mRNAs. By using 5' deletion mutants of promoter II fused to the bacterial chloramphenicol acetyltransferase (CAT) gene, the DNA mobility shift assay and the DNase I footprinting assay, the authors have identified the 30 bp from −389 to −359 as the TNF responsive element in promoter II. TNF treatment causes a decrease in the binding activity of nuclear protein(s) specific to the TNF responsive element. When the fragment containing the TNF responsive element was incorporated into the thymidine kinase promoter, the chimeric gene exhibited TNF induced inhibition of expression.


1993 ◽  
Vol 268 (36) ◽  
pp. 27363-27370
Author(s):  
R S Eisenstein ◽  
P T Tuazon ◽  
K L Schalinske ◽  
S A Anderson ◽  
J A Traugh

1991 ◽  
Vol 19 (22) ◽  
pp. 6333-6333 ◽  
Author(s):  
Caroline C. Philpott ◽  
Tracey A. Rouault ◽  
Richard D. Klausner

2012 ◽  
Vol 49 (2) ◽  
pp. 97-106 ◽  
Author(s):  
D T Furuya ◽  
A C Poletto ◽  
H S Freitas ◽  
U F Machado

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 μM arachidonyl-2′-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 μM AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-κB and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (∼2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-κB at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-κB and SREBP-1 transcriptional regulation.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2715-2718 ◽  
Author(s):  
Junichi Tsukada ◽  
Yoko Toda ◽  
Masahiro Misago ◽  
Yoshiya Tanaka ◽  
Philip E. Auron ◽  
...  

Abstract The activation status of a recently identified STAT (signal transducers and activators of transcription) factor, LIL-Stat (lipopolysaccharide [LPS]/IL-1–inducible Stat) in adult T-cell leukemia (ATL) cells was investigated by electrophoretic mobility shift assays using nuclear extracts of leukemic cells from 7 patients with ATL and a GAS (gamma interferon activation site)-like element termed LILRE (LPS/IL-1–responsive element), which is found in the human prointerleukin 1β (IL1B) gene. Spontaneous DNA binding of LIL-Stat was observed in all ATL cells examined. However, in normal human peripheral lymphocytes, DNA binding of LIL-Stat was detected only after stimulation with IL-1. These results demonstrated that LIL-Stat is constitutively activated in ATL cells. Furthermore, our transient transfection studies using LILRE chloramphenicol acetyltransferase (CAT) reporters argue that LIL-Stat in ATL cells functions as a transcriptional activator through binding to the LILRE in theIL1B gene.


Sign in / Sign up

Export Citation Format

Share Document