scholarly journals Espinoza JL, Elbadry MI, Chonabayashi K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018;2(4):390-400.

2018 ◽  
Vol 2 (17) ◽  
pp. 2253-2253
2018 ◽  
Vol 2 (4) ◽  
pp. 390-400 ◽  
Author(s):  
J. Luis Espinoza ◽  
Mahmoud I. Elbadry ◽  
Kazuhisa Chonabayashi ◽  
Yoshinori Yoshida ◽  
Takamasa Katagiri ◽  
...  

Key Points HLA-lacking iPSC-derived HSCs from aplastic anemia patients show a hematopoietic ability similar to wild-type iPSC-HSCs. iPSC-HSCs that lack HLA-B4002 escape specific T-cell attack.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e16897 ◽  
Author(s):  
Warren L. Denning ◽  
Jun Xu ◽  
Siqi Guo ◽  
Christopher A. Klug ◽  
Zdenek Hel

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3197-3197
Author(s):  
Takamasa Katagiri ◽  
Zhirong Qi ◽  
Yu Kiyu ◽  
Naomi Sugimori ◽  
J. Luis Espinoza ◽  
...  

Abstract Abstract 3197 Poster Board III-134 Small populations of glycosylphosphatidylinositol-anchored protein (GPI-AP)-deficient blood cells are often detectable in the peripheral blood (PB) of patients with aplastic anemia (AA) and refractory anemia (RA) of myelodysplastic syndromes defined by the FAB classification. Such PNH-type cells are thought to be derived from PIG-A mutant hematopoietic stem cells (HSCs) that avoid the immunological attack against HSCs. Inefficient T cell responses to PNH-type cells were indeed demonstrated by a murine study. However, there is no direct evidence in support of the escape theory concerning the expansion of PIG-A mutant HSCs in such patients with bone marrow (BM) failure. If the escape theory is true, the PNH-type cells should be detected in myeloid cells derived from HSCs that are targeted by the immune system attack. The PB of 527 patients with BM failure was examined for the presence of GPI-AP deficient cells in various lineages of cells including granulocytes, erythrocytes, monocytes, T cells, B cells, and NK cells using high sensitivity flow cytometry to verify this hypothesis. PNH-type cells were detectable in at least one lineage of cells from 228 (43%) patients. Although most of the positive patients showed PNH-type cells in two or more lineages including granulocytes or monocytes, 14 patients (13 with AA and 1 with amegakaryocytic thrombocytopenia) displayed PNH-type CD48-CD55-CD59- cells only in T cells at a frequency of 0.003-0.3% of the total T cells (Figure). The PNH-type T cells were undetectable in any of 25 healthy individuals. The CD48-CD55-CD59- T cells consisted of predominantly effector memory and terminal effector memory cells with naïve phenotype cells. The phenotypic pattern of the PNH-type T cells was very similar to that of CD48-CD55-CD59- T cells from 11 patients with florid PNH but was different from that of CD48-CD55-CD59- T cells (central and effector memory cells alone) detected in 4 marrow transplant recipients who received anti-CD52 antibody (alemtuzumab) therapy as conditioning. PIG-A gene analyses of CD48-CD55-CD59- T cells revealed a single mutation in 2 patients with PNH-type T cells alone, while two different mutations were revealed in 2 patients treated with alemtuzumab. BM failure patients with PNH-type T cells alone and other BM failure patients possessing PNH-type granulocytes or monocytes showed similar clinical features characterized by predominant thrombocytopenia and good response to immunosuppressive therapy, thus suggesting an increase in the number of PNH-type cells in both groups to be associated with a similar immune pathophysiology. The escape theory cannot account for the presence of PNH-type cells exclusively in T cells in immune-mediated BM failure because T cell precursors are not the target of the immune system attack in AA. Therefore, mechanisms other than the escape theory must be considered for the initial proliferation of PIG-A mutant HSCs associated with the development of AA, such as preferential activation of dormant PIG-A mutant HSCs or T cell precursors due to the deficiency of GPI-APs that transmit negative signal Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Victoria Sun ◽  
Amelie Montel-Hagen ◽  
David Casero ◽  
Steven Tsai ◽  
Alexandre Zampieri ◽  
...  

PEDIATRICS ◽  
2012 ◽  
Vol 129 (6) ◽  
pp. e1612-e1615 ◽  
Author(s):  
H. Wang ◽  
H. Yan ◽  
Z. Wang ◽  
L. Zhu ◽  
J. Liu ◽  
...  

2013 ◽  
Vol 57 (1-3) ◽  
pp. 34-43 ◽  
Author(s):  
Wendy Weston ◽  
Vineet Gupta ◽  
Rebecca Adkins ◽  
Roland Jurecic

Author(s):  
Koichi Akashi ◽  
Motonari Kondo ◽  
Annette M. Schlageter ◽  
Irving L. Weissman

Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Sign in / Sign up

Export Citation Format

Share Document