scholarly journals Differential roles of factors IX and XI in murine placenta and hemostasis under conditions of low tissue factor

2020 ◽  
Vol 4 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Steven P. Grover ◽  
Clare M. Schmedes ◽  
Alyson C. Auriemma ◽  
Emily Butler ◽  
Molly L. Parrish ◽  
...  

Abstract The intrinsic tenase complex (FIXa-FVIIIa) of the intrinsic coagulation pathway and, to a lesser extent, thrombin-mediated activation of FXI, are necessary to amplify tissue factor (TF)-FVIIa–initiated thrombin generation. In this study, we determined the contribution of murine FIX and FXI to TF-dependent thrombin generation in vitro. We further investigated TF-dependent FIX activation in mice and the contribution of this pathway to hemostasis. Thrombin generation was decreased in FIX- but not in FXI-deficient mouse plasma. Furthermore, injection of TF increased levels of FIXa-antithrombin complexes in both wild-type and FXI−/− mice. Genetic studies were used to determine the effect of complete deficiencies of either FIX or FXI on the survival of mice expressing low levels of TF. Low-TF;FIX−/y male mice were born at the expected frequency, but none survived to wean. In contrast, low-TF;FXI−/− mice were generated at the expected frequency at wean and had a 6-month survival equivalent to that of low-TF mice. Surprisingly, a deficiency of FXI, but not FIX, exacerbated the size of blood pools in low-TF placentas and led to acute hemorrhage and death of some pregnant dams. Our data indicate that FIX, but not FXI, is essential for survival of low-TF mice after birth. This finding suggests that TF-FVIIa–mediated activation of FIX plays a critical role in murine hemostasis. In contrast, FXI deficiency, but not FIX deficiency, exacerbated blood pooling in low-TF placentas, indicating a tissue-specific requirement for FXI in the murine placenta under conditions of low TF.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3736-3736
Author(s):  
Anna Falanga ◽  
Alfonso Vignoli ◽  
Marina Marchetti ◽  
Laura Russo ◽  
Marina Panova-Noeva ◽  
...  

Abstract Clinical data suggest an increased thrombotic risk in patients with ET or PV carrying the JAK2V617F mutation. Laboratory data from our group show that ET patients carrying the JAK2V617F mutation are characterized by an enhanced platelet and neutrophil activation status (Falanga et al, Exp Hem 2007) and blood coagulation activation (Marchetti et al, Blood 2008), as compared to JAK2 wild-type ET. Since monocytes significantly contribute to blood coagulation activation as an important source of circulating tissue factor (TF), in this study we aimed to characterize the prothrombotic phenotype of monocytes from ET and PV patients and to evaluate whether and to what extent it is influenced by the JAK2V617F mutation. Twenty-four ET patients (10 JAK2 wild-type; 14 JAK2V617F carriers with 2%–35% mutant allele burden), 27 PV patients (all JAK2V617F carriers, 16 with 9%– 44% and 11 with 60%–100% allele burden, respectively), and 20 age-matched healthy subjects (controls, C) were enrolled into the study. Monocyte-associated TF antigen was measured on the cell surface by whole blood flow-cytometry, in both basal condition and after in vitro stimulation by bacterial endotoxin (lypopolysaccharide, LPS), as well as in cell lysates by ELISA. Monocyte procoagulant activity was evaluated by the Calibrated Automated Thrombogram (CAT) as the capacity of isolated monocyte lysates to induce thrombin generation in normal pool plasma. In basal conditions, significantly (p<0.05) higher surface levels of TF were measured on monocytes from ET (17.1±3.2% positive cells) and PV (24.4±3.7% positive cells) patients compared to C (8.2±1.9% positive cells). Similarly, the total TF antigen content of cell lysates was significantly increased in patients compared to C. The analysis of the data according to JAK2V617F mutational status, showed a gradient of increased TF expression starting from JAK2V617F negative patients (11.7±2.5%), versus JAK2V617F ET and PV subjects with <50% allele burden (20.3±3.6% and 23.2±2.8%, respectively), versus JAK2V617F PV patients with >50% allele burden (26.1±4.2%). The in vitro LPS stimulation significantly increased TF expression on monocytes from all study subjects and C compared to non-stimulated monocytes (p<0.05 for all groups), with a more elevated expression by monocytes from PV and ET patients compared to C. However, the relative increase in TF expression was greater in C (=3.7 fold) compared to both ET (=2.2 fold) and PV (=2 fold) patients. As observed in basal conditions, LPS-induced TF was higher in JAK2V617F positive patients as compared to negative, with the highest expression in JAK2V617F PV carriers with >50% allele load. Thrombin generation induced by monocytes from ET and PV patients was significantly increased compared to controls, as determined by significantly higher thrombin peaks (ET=145±12, PV=142±17, C=72.2±5 nM), and quantity of thrombin generated in time, i.e. the endogenous thrombin potential (ETP) (ET=1143±34, PV=1074±64, C=787±58 nM*min). The JAK2V617F PV subjects with >50% allele burden presented with the highest thrombin generation capacity (peak= 184±34 nM; ETP= 1268±32 nM). Our data indicate that the expression of the JAK2V617F mutation in ET and PV patients may confer to monocytes a different hemostatic phenotype in terms of increased expression of surface TF and thrombin generation capacity. These findings are in agreement with the previous observation of a hypercoagulable state associated with this mutation and suggest a new mechanism linking hemostatic cellular phenotypic alteration to genetic dysfunction in patients with myeloproliferative disease.


Blood ◽  
1982 ◽  
Vol 60 (1) ◽  
pp. 140-147
Author(s):  
PE Smariga ◽  
JR Maynard

Platelets stimulate tissue factor, the initiator of the extrinsic coagulation pathway, and increase fibrinolytic inhibition in fibroblasts grown in vitro. Cellular tissue factor increases an average of 2.8-fold over the control levels after a 6-hr incubation with platelets, and no activity is present in the media. Fibrinolytic inhibition is stimulated in both the fibroblasts and their media in the presence of platelets and accumulates throughout a 24-hr incubation. Neither leukocytes nor erythrocytes stimulate these changes. Both tissue factor and fibrinolytic inhibition increases are dependent on platelet concentration and are blocked by inhibitors of RNA or protein synthesis. Control smooth muscle cells have higher tissue factor and fibrinolytic inhibition than fibroblasts, but their response to the presence of platelets is similar. Confluent monolayers of endothelial cells have very low levels of tissue factor that are not altered by the presence of platelets. However, the ability of endothelial cells to inhibit fibrinolysis is enhanced by the presence of platelets. The fraction that stimulates tissue factor and fibrinolytic inhibition is distinct from platelet-derived growth factor and from the fraction that enhances leukocyte tissue factor. It is associated with an insoluble, nonmitogenic fraction that is not inactivated by phospholipase C, or diisopropylfluorophosphate, nor is it chloroform:methanol extractable. Platelets are a physiologic modulator for both cellular tissue factor and the fibrinolytic system in vitro.


Blood ◽  
1982 ◽  
Vol 60 (1) ◽  
pp. 140-147 ◽  
Author(s):  
PE Smariga ◽  
JR Maynard

Abstract Platelets stimulate tissue factor, the initiator of the extrinsic coagulation pathway, and increase fibrinolytic inhibition in fibroblasts grown in vitro. Cellular tissue factor increases an average of 2.8-fold over the control levels after a 6-hr incubation with platelets, and no activity is present in the media. Fibrinolytic inhibition is stimulated in both the fibroblasts and their media in the presence of platelets and accumulates throughout a 24-hr incubation. Neither leukocytes nor erythrocytes stimulate these changes. Both tissue factor and fibrinolytic inhibition increases are dependent on platelet concentration and are blocked by inhibitors of RNA or protein synthesis. Control smooth muscle cells have higher tissue factor and fibrinolytic inhibition than fibroblasts, but their response to the presence of platelets is similar. Confluent monolayers of endothelial cells have very low levels of tissue factor that are not altered by the presence of platelets. However, the ability of endothelial cells to inhibit fibrinolysis is enhanced by the presence of platelets. The fraction that stimulates tissue factor and fibrinolytic inhibition is distinct from platelet-derived growth factor and from the fraction that enhances leukocyte tissue factor. It is associated with an insoluble, nonmitogenic fraction that is not inactivated by phospholipase C, or diisopropylfluorophosphate, nor is it chloroform:methanol extractable. Platelets are a physiologic modulator for both cellular tissue factor and the fibrinolytic system in vitro.


2016 ◽  
Vol 23 (2) ◽  
pp. 196-205 ◽  
Author(s):  
Marit Hellum ◽  
Anne-Marie S Trøseid ◽  
Jens P Berg ◽  
Petter Brandtzaeg ◽  
Reidun Øvstebø ◽  
...  

Neisseria meningitidis (N. meningitidis) may cause sepsis and meningitis. N. meningitidis with a mutated lpxL1 gene has five, instead of six, acyl chains in the lipid A moiety. Compared with patients infected with the wild type (wt) meningococcus, patients infected with the lpxL1 mutant have a mild meningococcal disease with less systemic inflammation and less coagulopathy. Circulating tissue factor (TF), the main initiator of coagulation, has a central role in the development of coagulation disturbances during sepsis. To study how TF was influenced by the lpxL1 mutant, human primary monocytes and whole blood were incubated with the lpxL1 mutant or the wt meningococcus (H44/76). Monocyte and microvesicle (MV)-associated TF expression and TF-dependent thrombin generation were measured. In both purified monocytes and whole blood, our data show that the lpxL1 mutant is a weaker inducer of monocyte and MV-associated TF compared with the wt. Our data indicate that low levels of circulating TF may contribute to the reduced coagulopathy reported in patients infected with lpxL1 mutants.


2008 ◽  
Vol 34 (S 01) ◽  
pp. 087-090
Author(s):  
Meyer Samama ◽  
Léna Le Flem ◽  
Céline Guinet ◽  
François Depasse

2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3524-3535 ◽  
Author(s):  
S Chaing ◽  
B Clarke ◽  
S Sridhara ◽  
K Chu ◽  
P Friedman ◽  
...  

Abstract Factor VII (F.VII) is a vitamin-K-dependent serine protease required in the early stages of blood coagulation. We describe here a patient with severe F.VII deficiency, with a normal plasma F.VII antigen level (452 ng/mL) and F.VII activity less than 1%, who is homozygous for two defects: a G-->A transition at nucleotide 6055 in exon 4, which results in an Arg-->Gln change at amino acid 79 (R79Q); and a G-->A transition at nucleotide 8961 in exon 6, which results in an Arg-->Gln substitution at amino acid 152 (R152Q). The R79Q mutation occurs in the first epidermal growth factor (EGF)-like domain, which has previously been implicated in binding to tissue factor. The R152Q mutation occurs at a site (Arg 152-Ile 153) that is normally cleaved to generate activated F.VII (F.VIIa). Analysis of purified F.VII from patient plasma shows that the material cannot be activated by F.Xa and cofactors. In addition, in an in vitro binding assay using relipidated recombinant tissue factor, patient plasma showed markedly reduced binding to tissue factor at all concentrations tested. In an effort to separate the contributions of the two mutations, three recombinant variants, wild-type, R79Q, and R152Q, were prepared and analyzed. The R152Q variant had markedly reduced activity in a clotting assay, whereas R79Q showed a milder, concentration-dependent reduction. The R152Q variant exhibited nearly normal binding in the tissue factor binding assay, whereas the R79Q variant had markedly reduced binding. The time course of activation of the R79Q variant was slowed compared with wild-type. Our results suggest that the first EGF-like domain is required for binding to tissue factor and that the F.VII zymogen lacks activity and requires activation for expression of biologic activity.


2010 ◽  
Vol 104 (09) ◽  
pp. 514-522 ◽  
Author(s):  
Thomas Lecompte ◽  
Agnès Tournier ◽  
Lise Morlon ◽  
Monique Marchand-Arvier ◽  
Claude Vigneron ◽  
...  

SummaryCathepsin G (Cath G), a serine-protease found in neutrophils, has been reported to have effects that could either facilitate or impede coagulation. Thrombin generation (CAT method) was chosen to study its overall effect on the process, at a plasma concentration (240 nM) observed after neutrophil activation. Coagulation was triggered by tissue factor in the presence of platelets or phospholipid vesicles. To help identify potential targets of Cath G, plasma depleted of clotting factors or of inhibitors was used. Cath G induced a puzzling combination of two diverging effects of varying intensities depending on the phospholipid surface provided: accelerating the process under the three conditions (shortened clotting time by up to 30%), and impeding the process during the same thrombin generation time-course since thrombin peak and ETP (total thrombin potential) were decreased, up to 45% and 12%, respectively, suggestive of deficient prothrombinase. This is consistent with Cath G working on at least two targets in the coagulation cascade. Our data indicate that coagulation acceleration can be attributed neither to platelet activation and nor to activation of a clotting factor. When TFPI (tissue factor pathway inhibitor) was absent, no effect on lag time was observed and the anticoagulant activity of TFPI was decreased in the presence of Cath G. Consistent with the literature and the hypothesis of deficient prothrombinase, experiments using Russel’s Viper Venom indicate that the anticoagulant effect can be attributed to a deleterious effect on factor V. The clinical relevance of these findings deserves to be studied.


2006 ◽  
Vol 80 (7) ◽  
pp. 3582-3591 ◽  
Author(s):  
Jeffrey A. Speir ◽  
Brian Bothner ◽  
Chunxu Qu ◽  
Deborah A. Willits ◽  
Mark J. Young ◽  
...  

ABSTRACT Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-Å resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.


Sign in / Sign up

Export Citation Format

Share Document