scholarly journals Influenza-binding antibodies immobilise influenza viruses in fresh human airway mucus

2016 ◽  
Vol 49 (1) ◽  
pp. 1601709 ◽  
Author(s):  
Ying-Ying Wang ◽  
Dimple Harit ◽  
Durai B. Subramani ◽  
Harendra Arora ◽  
Priya A. Kumar ◽  
...  
2017 ◽  
Vol 533 (2) ◽  
pp. 373-376 ◽  
Author(s):  
Branko Vukosavljevic ◽  
Xabier Murgia ◽  
Konrad Schwarzkopf ◽  
Ulrich F. Schaefer ◽  
Claus-Michael Lehr ◽  
...  

2007 ◽  
Vol 81 (10) ◽  
pp. 5181-5191 ◽  
Author(s):  
Hongquan Wan ◽  
Daniel R. Perez

ABSTRACT Influenza A viruses of the H9N2 subtype are endemic in poultry in many Eurasian countries and have occasionally caused clinical respiratory diseases in humans. While some avian H9N2 viruses have glutamine (Q) at amino acid position 226 of the hemagglutinin (HA) receptor-binding site, an increasing number of isolates have leucine (L) at this position, which has been associated with the establishment of stable lineages of the H2 and H3 subtypes of viruses in humans. Little is known about the importance of this molecular trait in the infection of H9N2 viruses in humans. We show here that during the course of a single cycle of infection in human airway epithelial (HAE) cells cultured in vitro, the L-226-containing H9N2 viruses displayed human virus-like cell tropisms (preferentially infecting nonciliated cells) different from the tropisms showed by Q-226-containing H9N2 isolates (which infect both ciliated and nonciliated cells at ratios of 1:1 to 3:2) or other waterfowl viruses (which preferentially infect ciliated cells). During multiple cycles of replication in HAE cultures, L-226-containing H9N2 isolates grew consistently more efficiently and reached approximately 100-fold-higher peak titers than those containing Q-226, although peak titers were significantly lower than those induced by human H3N2 viruses. Our results suggest that the variation in residue 226 in the HA affects both cell tropism and replication of H9N2 viruses in HAE cells and may have implications for the abilities of these viruses to infect humans.


2013 ◽  
Vol 69 (2) ◽  
pp. 87-100 ◽  
Author(s):  
Eva Böttcher-Friebertshäuser ◽  
Hans-Dieter Klenk ◽  
Wolfgang Garten

2006 ◽  
Vol 80 (15) ◽  
pp. 7469-7480 ◽  
Author(s):  
Aida Ibricevic ◽  
Andrew Pekosz ◽  
Michael J. Walter ◽  
Celeste Newby ◽  
John T. Battaile ◽  
...  

ABSTRACT Recent human infections caused by the highly pathogenic avian influenza virus H5N1 strains emphasize an urgent need for assessment of factors that allow viral transmission, replication, and intra-airway spread. Important determinants for virus infection are epithelial cell receptors identified as glycans terminated by an α2,3-linked sialic acid (SA) that preferentially bind avian strains and glycans terminated by an α2,6-linked SA that bind human strains. The mouse is often used as a model for study of influenza viruses, including recent avian strains; however, the selectivity for infection of specific respiratory cell populations is not well described, and any relationship between receptors in the mouse and human lungs is incompletely understood. Here, using in vitro human and mouse airway epithelial cell models and in vivo mouse infection, we found that the α2,3-linked SA receptor was expressed in ciliated airway and type II alveolar epithelial cells and was targeted for cell-specific infection in both species. The α2,6-linked SA receptor was not expressed in the mouse, a factor that may contribute to the inability of some human strains to efficiently infect the mouse lung. In human airway epithelial cells, α2,6-linked SA was expressed and functional in both ciliated and goblet cells, providing expanded cellular tropism. Differences in receptor and cell-specific expression in these species suggest that differentiated human airway epithelial cell cultures may be superior for evaluation of some human strains, while the mouse can provide a model for studying avian strains that preferentially bind only the α2,3-linked SA receptor.


2018 ◽  
Vol 115 (26) ◽  
pp. 6822-6827 ◽  
Author(s):  
Jie Zhou ◽  
Cun Li ◽  
Norman Sachs ◽  
Man Chun Chiu ◽  
Bosco Ho-Yin Wong ◽  
...  

Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Anika Singanayagam ◽  
Maria Zambon ◽  
Wendy S. Barclay

ABSTRACT Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.


BIO-PROTOCOL ◽  
2019 ◽  
Vol 9 (13) ◽  
Author(s):  
Henry Goodell ◽  
Siddharth Shenoy ◽  
Nathan Shenkute ◽  
Elijah Lackey ◽  
Robert Dennis ◽  
...  

2010 ◽  
Vol 49 (1) ◽  
pp. 84-84
Author(s):  
Chang Hoon Kim ◽  
Joo-Heon Yoon
Keyword(s):  

2019 ◽  
Vol 11 (515) ◽  
pp. eaax5866 ◽  
Author(s):  
Mart Toots ◽  
Jeong-Joong Yoon ◽  
Robert M. Cox ◽  
Michael Hart ◽  
Zachary M. Sticher ◽  
...  

Influenza viruses constitute a major health threat and economic burden globally, frequently exacerbated by preexisting or rapidly emerging resistance to antiviral therapeutics. To address the unmet need of improved influenza therapy, we have created EIDD-2801, an isopropylester prodrug of the ribonucleoside analog N4-hydroxycytidine (NHC, EIDD-1931) that has shown broad anti-influenza virus activity in cultured cells and mice. Pharmacokinetic profiling demonstrated that EIDD-2801 was orally bioavailable in ferrets and nonhuman primates. Therapeutic oral dosing of influenza virus–infected ferrets reduced group pandemic 1 and group 2 seasonal influenza A shed virus load by multiple orders of magnitude and alleviated fever, airway epithelium histopathology, and inflammation, whereas postexposure prophylactic dosing was sterilizing. Deep sequencing highlighted lethal viral mutagenesis as the underlying mechanism of activity and revealed a prohibitive barrier to the development of viral resistance. Inhibitory concentrations were low nanomolar against influenza A and B viruses in disease-relevant well-differentiated human air-liquid interface airway epithelia. Correlating antiviral efficacy and cytotoxicity thresholds with pharmacokinetic profiles in human airway epithelium models revealed a therapeutic window >1713 and established dosing parameters required for efficacious human therapy. These data recommend EIDD-2801 as a clinical candidate with high potential for monotherapy of seasonal and pandemic influenza virus infections. Our results inform EIDD-2801 clinical trial design and drug exposure targets.


Sign in / Sign up

Export Citation Format

Share Document