scholarly journals Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy

2008 ◽  
Vol 8 (1) ◽  
pp. 26 ◽  
Author(s):  
Nina Peitsaro ◽  
Zydrune Polianskyte ◽  
Jarno Tuimala ◽  
Isabella Pörn-Ares ◽  
Julius Liobikas ◽  
...  
2001 ◽  
Vol 45 (7) ◽  
pp. 2075-2081 ◽  
Author(s):  
Ana Amoroso ◽  
Diego Demares ◽  
Marta Mollerach ◽  
Gabriel Gutkind ◽  
Jacques Coyette

ABSTRACT All detectable high-molecular-mass penicillin-binding proteins (HMM PBPs) are altered in a clinical isolate of Streptococcus mitis for which the β-lactam MICs are increased from those previously reported in our region (cefotaxime MIC, 64 μg/ml). These proteins were hardly detected at concentrations that saturate all PBPs in clinical isolates and showed, after densitometric analysis, 50-fold-lower radiotracer binding. Resistance was related to mosaic structure in all HMM PBP-coding genes, where critical region replacement was complemented not only by substitutions already reported for the closely related Streptococcus pneumoniae but also by other specific replacements that are presumably close to the active-site serine. Mosaic structure was also presumed in apbp1a-sensitive strain used for comparison, confirming that these structures do not unambiguously imply, by themselves, detectable critical changes in the kinetic properties of these proteins.


1988 ◽  
Vol 250 (2) ◽  
pp. 313-324 ◽  
Author(s):  
B Joris ◽  
J M Ghuysen ◽  
G Dive ◽  
A Renard ◽  
O Dideberg ◽  
...  

Homology searches and amino acid alignments, using the Streptomyces R61 DD-peptidase/penicillin-binding protein as reference, have been applied to the beta-lactamases of classes A and C, the Oxa-2 beta-lactamase (considered as the first known member of an additional class D), the low-Mr DD-peptidases/penicillin-binding proteins (protein no. 5 of Escherichia coli and Bacillus subtilis) and penicillin-binding domains of the high-Mr penicillin-binding proteins (PBP1A, PBP1B, PBP2 and PBP3 of E. coli). Though the evolutionary distance may vary considerably, all these penicillin-interactive proteins and domains appear to be members of a single superfamily of active-site-serine enzymes distinct from the classical trypsin or subtilisin families. The amino acid alignments reveal several conserved boxes that consist of strict identities or homologous amino acids. The significance of these boxes is highlighted by the known results of X-ray crystallography, chemical derivatization and site-directed-mutagenesis experiments.


2000 ◽  
Vol 44 (5) ◽  
pp. 1181-1185 ◽  
Author(s):  
Waldemar Vollmer ◽  
Joachim-Volker Höltje

ABSTRACT A simple assay for detection of compounds that bind to the active site in the transglycosylation domain of the essential bifunctional transglycosylase and transpeptidase penicillin-binding proteins (PBPs) is reported. The method is based on a competition with the specific transglycosylase inhibitor moenomycin. With moenomycin coupled to Affi-Gel beads, a simple filtration procedure allows the amount of labeled PBPs that bind to moenomycin beads in the presence of test substances to be determined. The PBPs can easily be labeled by the covalent binding of penicillin derivatives. Crude membrane extracts can be used as a source for the PBPs, and different kinds of labels for the penicillin-PBP complexes can be used. The assay can be adapted to high-throughput screens.


2005 ◽  
Vol 102 (3) ◽  
pp. 577-582 ◽  
Author(s):  
P. Macheboeuf ◽  
A. M. Di Guilmi ◽  
V. Job ◽  
T. Vernet ◽  
O. Dideberg ◽  
...  

1986 ◽  
Vol 235 (1) ◽  
pp. 159-165 ◽  
Author(s):  
J M Ghuysen ◽  
J M Frère ◽  
M Leyh-Bouille ◽  
M Nguyen-Distèche ◽  
J Coyette

Under certain conditions, the values of the parameters that govern the interactions between the active-site-serine D-alanyl-D-alanine-cleaving peptidases and both carbonyl-donor substrates and beta-lactam suicide substrates can be determined on the basis of the amounts of (serine ester-linked) acyl-protein formed during the reactions. Expressing the ‘affinity’ of a beta-lactam compound for a DD-peptidase in terms of second-order rate constant of enzyme acylation and first-order rate constant of acyl-enzyme breakdown rests upon specific features of the interaction (at a given temperature) and permits study of structure-activity relationships, analysis of the mechanism of intrinsic resistance and use of a ‘specificity index’ to define the capacity of a beta-lactam compound of discriminating between various sensitive enzymes. From knowledge of the first-order rate constant of acyl-enzyme breakdown and the given time of incubation, the beta-lactam compound concentrations that are necessary to achieve given extents of DD-peptidase inactivation can be converted into the second-order rate constant of enzyme acylation. The principles thus developed can be applied to the study of the multiple penicillin-binding proteins that occur in the plasma membranes of bacteria.


1985 ◽  
Vol 82 (7) ◽  
pp. 1999-2003 ◽  
Author(s):  
W. Keck ◽  
B. Glauner ◽  
U. Schwarz ◽  
J. K. Broome-Smith ◽  
B. G. Spratt

2008 ◽  
Vol 190 (13) ◽  
pp. 4782-4785 ◽  
Author(s):  
Sophie Magnet ◽  
Lionel Dubost ◽  
Arul Marie ◽  
Michel Arthur ◽  
Laurent Gutmann

ABSTRACT Three active-site cysteine l,d-transpeptidases can individually anchor the Braun lipoprotein to the Escherichia coli peptidoglycan. We show here that two additional enzymes of the same family form peptide bonds between the third residues of peptidoglycan stems, generating meso-DAP3→meso-DAP3 unusual cross-links. This activity partially replaces the d,d-transpeptidase activity of penicillin-binding proteins.


Sign in / Sign up

Export Citation Format

Share Document