scholarly journals Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas

2009 ◽  
Vol 9 (1) ◽  
pp. 174 ◽  
Author(s):  
Pratibha Vyas ◽  
Arvind Gulati
Symbiosis ◽  
2016 ◽  
Vol 72 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Liliana Mercedes Ludueña ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
Germán Barros ◽  
María Flavia Luna ◽  
...  

2012 ◽  
pp. 525-532 ◽  
Author(s):  
S. Velivelli ◽  
E. O'Herlihy ◽  
B. Janczura ◽  
B. Doyle Prestwich ◽  
J. Ghyselinck ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 1310-1316
Author(s):  
Gurjot Kaur ◽  
Poonam Sharma ◽  
Deepika Chhabra ◽  
Kailash Chand ◽  
Gurjit Singh Mangat

The present investigation was carried out to exploit bacterial endophytes associated with root and leaf tissue of rice plant for plant growth promotion (PGP) and colonization study in vitro. Total 10 endophytic bacterial isolates (Pseudomonas sp.) were evaluate for PGP traits like P solubilization, production of Indole acetic acid (IAA), siderophore, ACC deaminase, protease, cellulase, fluorescent pigment, urease and denitrification activity. Out of 10 endophytic bacteria 30 %, 60 %, 20 %, 70 %, 10 % and 10 % were positive for siderophore, protease, cellulase, fluorescent pigment, urease and denitrification respectively. Maximum IAA production was recorded with isolate LRBLE7 (18.8 μgml-1) followed by LRBRE4 (16.0 μgml-1) and maximum P-solubilization was recorded with isolate LRBRE4 (5.8 mg 100 ml-1) followed by LRBLE7 (4.4 mg 100 ml-1). ACC deaminase production was recorded with isolate LRBLE6 (O.D=0.352 nm) followed by LRBRE5 (O.D=0.324nm). Three potential isolates (LRBRE4, LRBRE6 and LRBLE7) were selected on the basis of multiple PGP traits and were subjected to colonization study of rice seedling in vitro. Potential bacterial isolates can be exploited for improving growth and productivity in rice under sustainable management system.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Mapelli ◽  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marta Barbato ◽  
Hanene Cherif ◽  
...  

Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres ofSalicorniaplants and bulk soils were collected fromSebkhetandChotthypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated withSalicorniaroot system. A large collection of 475 halophilic and halotolerant bacteria was established fromSalicorniarhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. TwentyHalomonasstrains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activitiesin vitroat 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using agfp-labelled strain it was possible to demonstrate thatHalomonasis capable of successfully colonisingSalicorniaroots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.


Author(s):  
Rajiv Pathak ◽  
Vipassana Paudel ◽  
Anupama Shrestha ◽  
Janardan Lamichhane ◽  
Dhurva. P. Gauchan

Phosphorous (P) is an essential macronutrient and most soils contain high levels of P. However, its availability to plant is limited by rapid immobilization of phosphorous compounds to insoluble forms and hence plant available forms of P in soils are found in low amounts. Phosphate solubilizing bacteria provide an eco-friendly alternative to convert insoluble phosphates into plant available forms. In the present study, three phosphate solubilizing bacterial isolates (PB-1, PB-4 and VC-01) with visually significant phosphate solubilizing abilities were isolated from tomato rhizosphere soil. In-vitro study in pikovskaya’s agar revealed that isolate PB-1 had the highest phosphate solubilizing ability with a phosphate solubilizing index of 2.08±0.07 followed by isolate VC-01 (1.31±0.09) and PB-4 (1.24±0.08). Isolates were used as bacterial inoculum to assess their ability to promote tomato (Lycopersicon esculentum var. Srijana) seedling and plant growth in in-vitro and greenhouse experiment respectively. Isolate PB-4 showed best growth promotion in seedling assay whereas isolate PB-1 and VC-01 also promoted seedling growth compared to control. In greenhouse experiment however, isolates VC-01 and PB-1 significantly enhanced all parameters (shoot length, root length, shoot and root dry weight) compared to uninoculated control whereas isolate PB-4 had a positive effect on all parameters except root length.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 61-70


2021 ◽  
Vol 11 ◽  
Author(s):  
Francisco Massot ◽  
Panagiotis Gkorezis ◽  
Jonathan Van Hamme ◽  
Damian Marino ◽  
Bojana Spirovic Trifunovic ◽  
...  

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.


Sign in / Sign up

Export Citation Format

Share Document