scholarly journals Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study

2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Alfred B Tiono ◽  
Moussa W Guelbeogo ◽  
N Falé Sagnon ◽  
Issa Nébié ◽  
Sodiomon B Sirima ◽  
...  
2021 ◽  
Vol 6 ◽  
pp. 79
Author(s):  
John W.G. Addy ◽  
Yaw Bediako ◽  
Francis M. Ndungu ◽  
John Joseph Valetta ◽  
Adam J. Reid ◽  
...  

Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Boniphace Sylvester ◽  
Dinah B. Gasarasi ◽  
Said Aboud ◽  
Donath Tarimo ◽  
Siriel Masawe ◽  
...  

Background. Infants born to mothers with placental malaria are prenatally exposed to Plasmodium falciparum antigens. However, the effect of that exposure to subsequent immune responses has not been fully elucidated. This study aimed at determining the effect of prenatal exposure to P. falciparum on Interleukin-10 and Interferon-γ responses during clinical malaria episodes in the first 24 months of life. Methods. This prospective cohort study involved 215 infants aged 0-2 years born to mothers with or without placental malaria. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of IL-10 and IFN-γ in infants and detect IgM in cord blood. Data were analyzed using SPSS version 20. Findings. Geometric mean for IFN-γ in exposed infants was 557.9 pg/ml (95% CI: 511.6-604.1) and in unexposed infants it was 634.4 pg/ml (95% CI: 618.2-668.5) (P=0.02). Mean IL-10 was 22.4 pg/ml (95% CI: 19.4-28.4) and 15.1 pg/ml (95%CI: 12.4-17.6), respectively (P=0.01). Conclusions. Prenatal exposure to P. falciparum antigens significantly affects IL-10 and IFN-γ responses during clinical malaria episodes in the first two years of life.


Parasitology ◽  
1998 ◽  
Vol 116 (6) ◽  
pp. 501-510 ◽  
Author(s):  
C. ROPER ◽  
W. RICHARDSON ◽  
I. M. ELHASSAN ◽  
H. GIHA ◽  
L. HVIID ◽  
...  

Residents of Daraweesh village in Sudan were monitored for Plasmodium falciparum infection and malaria morbidity in 3 malaria seasons from 1993 to 1996. Malaria parasites were detected microscopically and by polymerase chain reaction (PCR) in a series of cross-sectional surveys. PCR revealed submicroscopical infections during the dry season, particularly among individuals who had recovered from a malaria episode following successful drug treatment. Clinical and subclinical infections were contrasted by assaying for allelic polymorphism at 2 gene loci, MSP-1 and GLURP and 2 hypotheses examined with reference to these data: that clinical malaria is associated with infection with novel parasite genotypes not previously detected in that host, or alternatively, that clinical malaria episodes are associated with an increased number of clones in an infection. We detected more mixed infections among clinical isolates, but people carrying parasites during the dry season were not found to have an increased risk of disease in the following malaria season. There was a clear association of disease with the appearance of novel parasite genotypes.


1996 ◽  
Vol 54 (6) ◽  
pp. 632-643 ◽  
Author(s):  
Hugues Contamin ◽  
Lassana Konate ◽  
Jean-Francois Trape ◽  
Odile Mercereau-Puijalon ◽  
Christophe Rogier ◽  
...  

2004 ◽  
Vol 72 (11) ◽  
pp. 6492-6502 ◽  
Author(s):  
David R. Cavanagh ◽  
Daniel Dodoo ◽  
Lars Hviid ◽  
Jørgen A. L. Kurtzhals ◽  
Thor G. Theander ◽  
...  

ABSTRACT This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the block 2 region of MSP-1 were measured in a cohort of 280 children before the beginning of the major malaria transmission season. The cohort was then actively monitored for malaria, clinically and parasitologically, over a period of 17 months. Evidence is presented for an association between antibody responses to block 2 and a significantly reduced risk of subsequent clinical malaria. Furthermore, statistical survival analysis provides new information on the duration of the effect over time. The results support a conclusion that the block 2 region of MSP-1 is a target of protective immunity against P. falciparum and, thus, a promising new candidate for the development of a malaria vaccine.


2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A35.2-A35
Author(s):  
Makhtar Niang ◽  
Cheikh Talla ◽  
Nafissatou Diagne ◽  
Fatoutama Diene-Sarr ◽  
Cheikh Sokhna

BackgroundThe global decline of malaria incidence over the past decade has led to the thought that elimination could be achieved. This has resulted in an increased interest to design strategies to target the hidden reservoir of asymptomatic infections among populations and interrupt on-going residual local malaria transmission. This study explored the reservoir of asymptomatic Plasmodium infections and its relationship with subsequent clinical malaria infections in low-transmission areas in Senegal.MethodsCross-sectional surveys were carried out in 2013, 2014, 2015, and 2016 and combined with longitudinal follow-up to determine and geolocalise both asymptomatic and clinical malaria episodes in Dielmo and Ndiop, Senegal. The prevalence of asymptomatic Plasmodium carriage in the community was investigated by real-time PCR while clinical malaria attacks were identified at health facilities during the transmission season. All households were georeferenced to spatially map asymptomatic and clinical infections.ResultsThe study revealed substantial asymptomatic infections with average parasite carriage of 8.11% and 7% in Dielmo and Ndiop, respectively. P. falciparum accounted for most asymptomatic infections (more than 90%). In Dielmo, 95% of asymptomatic infections clustered within the same geographical areas while infections were disparate in Ndiop. Preliminary fine-scale mapping of asymptomatic and clinical malaria infections identified clusters of higher malaria incidence interpreted as foci of transmission across the four-year study period with 95%–98% of clinical infections occurring in households where an asymptomatic malaria infection existed.ConclusionThis study revealed substantial asymptomatic Plasmodium infections in both settings throughout the four-year study period and spatial clusters of malaria infections at the microepidemiological level. Together, these findings could offer a feasible approach for a rational targeting of malaria control interventions to achieve elimination.


2021 ◽  
Vol 6 ◽  
pp. 79
Author(s):  
John W.G. Addy ◽  
Yaw Bediako ◽  
Francis M. Ndungu ◽  
John Joseph Valetta ◽  
Adam J. Reid ◽  
...  

Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.


Sign in / Sign up

Export Citation Format

Share Document