scholarly journals Mating competitiveness of sterile male Anopheles coluzzii in large cages

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Hamidou Maïga ◽  
David Damiens ◽  
Abdoulaye Niang ◽  
Simon P Sawadogo ◽  
Omnia Fatherhaman ◽  
...  
2019 ◽  
Author(s):  
T Ramadhani ◽  
UK Hadi ◽  
S Soviana ◽  
Z Irawati ◽  
A Rahayu ◽  
...  

ABSTRACTCulex quinquefasciatus is the main vector of lymphatic filariasis in Pekalongan City. Sterile Insect Tehnique (SIT) could be complementary vector control for filariasis. The key success of the technique depend on the ability of laboratory-reared sterile males with the wild-type females.The aim of the research was to determine the mating competitiveness, the fecundity and the fertility of sterile male Culex quinquefasciatus. The pupae of Cx. quinquefasciatus were gamma irradiated at the doses of 60Gy, 70Gy, and 80Gy, while unirradiated pupae were prepared as control. The mosquitoes emerging from the irradiated pupae could mate with a normal female in the cages. It were observed for the mean female laying eggs, the fecundity, the fertility and the mating competitiveness. The data were analyzed by one way ANOVA. The result showed that the irradiated Cx. quinquefasciatus at the doses tested did not affect on the fecundity and the mating competitiveness, but the fertility was disturbed (sterile). A dose of 70 Gy was the optimum dose or a fertility rate of 1.8% (98.2% sterile), and the value of competitiveness (C index) was 0.568. Based on the result, the irradiated Cx. quinquefasciatus can be recommended for semifield application.


2021 ◽  
Author(s):  
Fabiana Sassù ◽  
Thierno Bakhoum ◽  
Jérémy Bouyer ◽  
Carlos Cáceres

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Nwamaka Oluchukwu Akpodiete ◽  
Frédéric Tripet

Abstract Background The sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. Divergent larval ecological adaptations, resulting in Genotype-by-Environment (G × E) interactions, have been proposed as important drivers of speciation in these species. In West Africa, An. coluzzii tends to be associated with permanent man-made larval habitats such as irrigated rice fields, which are typically more eutrophic and mineral and ammonia-rich than the temporary rain pools exploited by An. gambiae (s.s.) Methods To highlight G × E interactions at the larval stage and their possible role in ecological speciation of these species, we first investigated the effect of exposure to ammonium hydroxide and water mineralisation on larval developmental success. Mosquito larvae were exposed to two water sources and increasing ammonia concentrations in small containers until adult emergence. In a second experiment, larval developmental success was compared across two contrasted microcosms to highlight G × E interactions under conditions such as those found in the natural environment. Results The first experiment revealed significant G × E interactions in developmental success and phenotypic quality for both species in response to increasing ammonia concentrations and water mineralisation. The An. coluzzii strain outperformed the An. gambiae (s.s.) strain under limited conditions that were closer to more eutrophic habitats. The second experiment revealed divergent crisscrossing reaction norms in the developmental success of the sibling species in the two contrasted larval environments. As expected, An. coluzzii had higher emergence rates in the rice paddy environment with emerging adults of superior phenotypic quality compared to An. gambiae (s.s.), and vice versa, in the rain puddle environment. Conclusions Evidence for such G × E interactions lends support to the hypothesis that divergent larval adaptations to the environmental conditions found in man-made habitats such as rice fields in An. coluzzii may have been an important driver of its ecological speciation.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 97
Author(s):  
Nace Kranjc ◽  
Andrea Crisanti ◽  
Tony Nolan ◽  
Federica Bernardini

The increase in molecular tools for the genetic engineering of insect pests and disease vectors, such as Anopheles mosquitoes that transmit malaria, has led to an unprecedented investigation of the genomic landscape of these organisms. The understanding of genome variability in wild mosquito populations is of primary importance for vector control strategies. This is particularly the case for gene drive systems, which look to introduce genetic traits into a population by targeting specific genomic regions. Gene drive targets with functional or structural constraints are highly desirable as they are less likely to tolerate mutations that prevent targeting by the gene drive and consequent failure of the technology. In this study we describe a bioinformatic pipeline that allows the analysis of whole genome data for the identification of highly conserved regions that can point at potential functional or structural constraints. The analysis was conducted across the genomes of 22 insect species separated by more than hundred million years of evolution and includes the observed genomic variation within field caught samples of Anopheles gambiae and Anopheles coluzzii, the two most dominant malaria vectors. This study offers insight into the level of conservation at a genome-wide scale as well as at per base-pair resolution. The results of this analysis are gathered in a data storage system that allows for flexible extraction and bioinformatic manipulation. Furthermore, it represents a valuable resource that could provide insight into population structure and dynamics of the species in the complex and benefit the development and implementation of genetic strategies to tackle malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neil M. Longo-Pendy ◽  
Billy Tene-Fossog ◽  
Robert E. Tawedi ◽  
Ousman Akone-Ella ◽  
Celine Toty ◽  
...  

AbstractIn Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.


2017 ◽  
Vol 114 (47) ◽  
pp. 12566-12571 ◽  
Author(s):  
Fabio M. Gomes ◽  
Bretta L. Hixson ◽  
Miles D. W. Tyner ◽  
Jose Luis Ramirez ◽  
Gaspar E. Canepa ◽  
...  

A naturally occurring Wolbachia strain (wAnga-Mali) was identified in mosquitoes of the Anopheles gambiae complex collected in the Malian villages of Dangassa and Kenieroba. Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains from supergroup A and has the highest homology to a Wolbachia strain isolated from cat fleas (Ctenocephalides). wAnga-Mali is different from two Wolbachia strains previously reported in A. gambiae from Burkina Faso (wAnga_VK5_STP and wAnga_VK5_3.1a). Quantitative analysis of Wolbachia and Plasmodium sporozoite infection in field-collected mosquitoes indicates that the prevalence and intensity of Plasmodium falciparum sporozoite infection is significantly lower in Wolbachia-infected females. The presence of Wolbachia in females from a laboratory Anopheles coluzzii (A. gambiae, M form) colony experimentally infected with P. falciparum (NF54 strain) gametocyte cultures slightly enhanced oocyst infection. However, Wolbachia infection significantly reduced the prevalence and intensity of sporozoite infection, as observed in the field. This indicates that wAnga-Mali infection does not limit early stages of Plasmodium infection in the mosquito, but it has a strong deleterious effect on sporozoites and reduces malaria transmission.


Sign in / Sign up

Export Citation Format

Share Document