scholarly journals Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis

2014 ◽  
Vol 11 (1) ◽  
pp. 136 ◽  
Author(s):  
Alberto Leardini ◽  
Giada Lullini ◽  
Sandro Giannini ◽  
Lisa Berti ◽  
Maurizio Ortolani ◽  
...  
2018 ◽  
Vol 42 (6) ◽  
pp. 872-883 ◽  
Author(s):  
Young-Shin Cho ◽  
Seong-Ho Jang ◽  
Jae-Sung Cho ◽  
Mi-Jung Kim ◽  
Hyeok Dong Lee ◽  
...  

2018 ◽  
Vol 64 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Tong-Hun Hwang ◽  
Julia Reh ◽  
Alfred O. Effenberg ◽  
Holger Blume

2020 ◽  
Vol 44 (1) ◽  
pp. 48-57
Author(s):  
Junhee Lee ◽  
Chang Hoon Bae ◽  
Aeri Jang ◽  
Seoyon Yang ◽  
Hasuk Bae

Objective To evaluate the gait pattern of patients with gait disturbances without consideration of defilades due to assistive devices. This study focuses on gait analysis using the inertial measurement unit (IMU) system, which can also be used to determine the most appropriate assistive device for patients with gait disturbances.Methods Records of 18 disabled patients who visited the Department of Rehabilitation from May 2018 to June 2018 were selected. Patients’ gait patterns were analyzed using the IMU system with different assistive devices to determine the most appropriate device depending on the patient’s condition. Evaluation was performed using two or more devices, and the appropriate device was selected by comparing the 14 parameters of gait evaluation. The device showing measurements nearer or the nearest to the normative value was selected for rehabilitation.Results The result of the gait evaluation in all 18 patients was analyzed using the IMU system. According to the records, the patients were evaluated using various assistive devices without consideration of defilades. Moreover, this gait analysis was effective in determining the most appropriate device for each patient. Increased gait cycle time and swing phase and decreased stance phase were observed in devices requiring significant assistance.Conclusion The IMU-based gait analysis system is beneficial in evaluating gait in clinical fields. Specifically, it is useful in evaluating patients with gait disturbances who require assistive devices. Furthermore, it allows the establishment of an evidence-based decision for the most appropriate assistive walking devices for patients with gait disturbances.


2019 ◽  
pp. 027836491985336 ◽  
Author(s):  
Zheng Huai ◽  
Guoquan Huang

In this paper, we propose a novel robocentric formulation of the visual–inertial navigation system (VINS) within a sliding-window filtering framework and design an efficient, lightweight, robocentric visual–inertial odometry (R-VIO) algorithm for consistent motion tracking even in challenging environments using only a monocular camera and a six-axis inertial measurement unit (IMU). The key idea is to deliberately reformulate the VINS with respect to a moving local frame, rather than a fixed global frame of reference as in the standard world-centric VINS, in order to obtain relative motion estimates of higher accuracy for updating global pose. As an immediate advantage of this robocentric formulation, the proposed R-VIO can start from an arbitrary pose, without the need to align the initial orientation with the global gravitational direction. More importantly, we analytically show that the linearized robocentric VINS does not undergo the observability mismatch issue as in the standard world-centric counterparts that has been identified in the literature as the main cause of estimation inconsistency. Furthermore, we investigate in depth the special motions that degrade the performance in the world-centric formulation and show that such degenerate cases can be easily compensated for by the proposed robocentric formulation, without resorting to additional sensors as in the world-centric formulation, thus leading to better robustness. The proposed R-VIO algorithm has been extensively validated through both Monte Carlo simulation and real-world experiments with different sensing platforms navigating in different environments, and shown to achieve better (or competitive at least) performance than the state-of-the-art VINS, in terms of consistency, accuracy, and efficiency.


Author(s):  
Pablo Aqueveque ◽  
Britam Arom Gómez ◽  
Francisco Saavedra ◽  
Cristian Canales ◽  
Simón Contreras ◽  
...  

There is a lack of commercially available low-cost technologies to assess gait clinically in non-controlled environments. As a consequence of this, there has been poor massification of motion measurement technologies that are both objective and reliable in nature. Advances about the study of gait and its interpretation in recent years using inertial sensors have allowed proposing acceptable alternatives for the development of portable and low-cost systems that contribute to people’s health in places and institutions that cannot acquire or maintain the operation of commercially available systems. A system based on a custom single Inertial Measurement Unit and a mobile application is proposed. Thus, an investigation is carried out using methodologies and algorithms found in the literature in order to get the main gait events and the spatial-temporal gait parameters. Twenty healthy Chilean subjects were assessed using a motion capture system simultaneously with the proposed tool. The results show that it is possible to estimate temporal gait parameters with slight differences respect gold--standard. We reach maximum mean differences of -2.35±5.02[step/min] for cadence, 0.03±0.04[sec] for stride time,0.02±0.03[sec] for step time, ±0.02[sec] for a single support time, 0.01±0.02[sec] for double support time and 0.01±0.03[m] for step length. As a result of experimental findings, we propose a new technological tool that can perform gait analysis. Our proposed system is user-friendly, low-cost, and portable. Therefore, we suggest that it could be an attractive technological tool that healthcare professionals could harness to objectively measure gait in environments that are either within the community or controlled. We also suggest that the tool could be used in countries where advanced clinical tools cannot be acquired. Therefore, we propose in this paper that our system is an attractive, alternative system that can be used for gait analysis by health professionals worldwide.


2020 ◽  
Vol 30 (2) ◽  
pp. 268-276
Author(s):  
Pablo Aqueveque ◽  
Britam Arom Gómez ◽  
Francisco Saavedra ◽  
Cristian Canales ◽  
Simón Contreras ◽  
...  

There is a lack of commercially available low-cost technologies to assess gait clinically in non-controlled environments. As a consequence of this, there has been poor massification of motion measurement technologies that are both objective and reliable in nature. Advances about the study of gait and its interpretation in recent years using inertial sensors have allowed proposing acceptable alternatives for the development of portable and low-cost systems that contribute to people’s health in places and institutions that cannot acquire or maintain the operation of commercially available systems. A system based on a custom single Inertial Measurement Unit and a mobile application is proposed. Thus, an investigation is carried out using methodologies and algorithms found in the literature in order to get the main gait events and the spatial-temporal gait parameters. Twenty healthy Chilean subjects were assessed using a motion capture system simultaneously with the proposed tool. The results show that it is possible to estimate temporal gait parameters with slight differences respect gold--standard. We reach maximum mean differences of -2.35±5.02[step/min] for cadence, 0.03±0.04[sec] for stride time,0.02±0.03[sec] for step time, ±0.02[sec] for a single support time, 0.01±0.02[sec] for double support time and 0.01±0.03[m] for step length. As a result of experimental findings, we propose a new technological tool that can perform gait analysis. Our proposed system is user-friendly, low-cost, and portable. Therefore, we suggest that it could be an attractive technological tool that healthcare professionals could harness to objectively measure gait in environments that are either within the community or controlled. We also suggest that the tool could be used in countries where advanced clinical tools cannot be acquired. Therefore, we propose in this paper that our system is an attractive, alternative system that can be used for gait analysis by health professionals worldwide.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0222913 ◽  
Author(s):  
Seung Hwan Han ◽  
Chang Oh Kim ◽  
Kwang Joon Kim ◽  
Jeanhong Jeon ◽  
Hsienhao Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document