scholarly journals FM1-43 is a Permeant Blocker of Mechanosensitive Ion Channels in Sensory Neurons and Inhibits Behavioural Responses to Mechanical Stimuli

2007 ◽  
Vol 3 ◽  
pp. 1744-8069-3-1 ◽  
Author(s):  
Liam J Drew ◽  
John N Wood
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


2002 ◽  
Vol 22 (4) ◽  
pp. 1238-1247 ◽  
Author(s):  
Hawon Cho ◽  
Jieun Shin ◽  
Chan Young Shin ◽  
Soon-Youl Lee ◽  
Uhtaek Oh

2017 ◽  
Vol 114 (40) ◽  
pp. E8343-E8351 ◽  
Author(s):  
Michael V. Clausen ◽  
Viwan Jarerattanachat ◽  
Elisabeth P. Carpenter ◽  
Mark S. P. Sansom ◽  
Stephen J. Tucker

Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiaofei Bai ◽  
Jeff Bouffard ◽  
Avery Lord ◽  
Katherine Brugman ◽  
Paul W Sternberg ◽  
...  

PIEZO1 and PIEZO2 are newly identified mechanosensitive ion channels that exhibit a preference for calcium in response to mechanical stimuli. In this study, we discovered the vital roles of pezo-1, the sole PIEZO ortholog in Caenorhabditiselegans, in regulating reproduction. A number of deletion alleles, as well as a putative gain-of-function mutant, of PEZO-1 caused a severe reduction in brood size. In vivo observations showed that oocytes undergo a variety of transit defects as they enter and exit the spermatheca during ovulation. Post-ovulation oocytes were frequently damaged during spermathecal contraction. However, the calcium signaling was not dramatically changed in the pezo-1 mutants during ovulation. Loss of PEZO-1 also led to an inability of self-sperm to navigate back to the spermatheca properly after being pushed out of the spermatheca during ovulation. These findings suggest that PEZO-1 acts in different reproductive tissues to promote proper ovulation and fertilization in C. elegans.


2021 ◽  
Author(s):  
Jung-uk Lee ◽  
Wookjin Shin ◽  
Yongjun Lim ◽  
Jungsil Kim ◽  
Woon Ryoung Kim ◽  
...  

2014 ◽  
Vol 112 (2) ◽  
pp. 590-595 ◽  
Author(s):  
Timothy Connelly ◽  
Yiqun Yu ◽  
Xavier Grosmaitre ◽  
Jue Wang ◽  
Lindsey C. Santarelli ◽  
...  

Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction.


Author(s):  
Ali Momin ◽  
Shahrzad Bahrampour ◽  
Hyun-Kee Min ◽  
Xin Chen ◽  
Xian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document