scholarly journals Correction: Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

2012 ◽  
Vol 5 (1) ◽  
pp. 66 ◽  
Author(s):  
Fei-ling Pua ◽  
Zhen Fang ◽  
Sarani Zakaria ◽  
Feng Guo ◽  
Chin-hua Chia
2011 ◽  
Vol 4 (1) ◽  
pp. 56 ◽  
Author(s):  
Fei-ling Pua ◽  
Zhen Fang ◽  
Sarani Zakaria ◽  
Feng Guo ◽  
Chin-hua Chia

Author(s):  
K. N. Prasanna Rani ◽  
T. S. V. R. Neeharika ◽  
G. Harsha Vardhan ◽  
T. Prathap Kumar ◽  
B. L. A. Prabhavathi Devi

2020 ◽  
Vol 146 ◽  
pp. 643-650
Author(s):  
Lu Li ◽  
Bin Yan ◽  
Huaxiao Li ◽  
Shitao Yu ◽  
Xiaoping Ge

2021 ◽  
Author(s):  
Bo Deng ◽  
Ya-xiong Wang ◽  
Li Huo ◽  
Ying Wang ◽  
Li’e Jin

Abstract In this paper, tannic acid, a polyphenolic substance rich in plants, is modified by the glutamic acid and cross-linked with formaldehyde to prepare a high acid density tannin-glutamate acid resin-based imitation enzyme solid acid catalyst (T-Glu-R), which is completely different from traditionally carbon-based solid acid synthesized by concentrated sulfuric acid and carbonized matter. The solid acid catalyst was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetry, and X-ray photoelectron spectroscopy. The catalytic activity and cycle performance of T-Glu-R in the cellulose hydrolysis reaction were evaluated. The results show that the acid density of T-Glu-R reached 7.28 mmol/g, which is much higher than that of the highest acid density of carbon-based solid acid. Microcrystalline cellulose was hydrolyzed in distilled water at 180 °C for 2 h, the yield of total reducing sugars reached 72.15%. After four cycles of hydrolysis, the yield was only reduced by 4.32%, showing excellent cycle performance and stability. The study provides a new strategy with the synthesis of solid acid catalyst for hydrolysis of cellulose converted into platform compounds without concentrated sulfuric acid.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 14071-14078
Author(s):  
Xi-Que Wu ◽  
Pan-Dao Liu ◽  
Qun Liu ◽  
Shu-Ying Xu ◽  
Yu-Cang Zhang ◽  
...  

A new strategy was developed to produce cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a recyclable solid acid catalyst with assistance of ultrasonic disintegration and a suction filtration film forming method.


2021 ◽  
Author(s):  
Manickam Selvaraj ◽  
Mohammed A. Assiri ◽  
Hari Singh ◽  
Jimmy Nelson Appaturi ◽  
Subrahmanyam Ch ◽  
...  

Prins cyclization of styrene (SE) with paraformaldehyde (PFCHO) was conducted with mesoporous ZnAlMCM-41 catalysts for synthesis of 4-phenyl-1,3-dioxane (4-PDO) under a liquid phase heterogeneous catalytic method. For comparison study, the...


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Davide Rigo ◽  
Nadia Alessandra Carmo Dos Santos ◽  
Alvise Perosa ◽  
Maurizio Selva

An unprecedented two-step sequence was designed by combining batch and continuous flow (CF) protocols for the upgrading of two aminodiol regioisomers derived from glycerol, i.e., 3-amino-1,2-propanediol and 2-amino-1,3-propanediol (serinol). Under batch conditions, at 80–90 °C, both substrates were quantitatively converted into the corresponding amides through a catalyst-free N-acetylation reaction mediated by an innocuous enol ester as isopropenyl acetate (iPAc). Thereafter, at 30–100 °C and 1–10 atm, the amide derivatives underwent a selective CF-acetalisation in the presence of acetone and a solid acid catalyst, to afford the double-functionalized (amide-acetal) products.


Sign in / Sign up

Export Citation Format

Share Document