scholarly journals Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina

Author(s):  
Zahra Saadi ◽  
Reyhane Saadi ◽  
Reza Fazaeli
2009 ◽  
Vol 9 (6) ◽  
pp. 661-670 ◽  
Author(s):  
S. P. Dubey ◽  
K. Gopal

The activated carbon of Eucalyptus globulus was tested for their effectiveness in removing hexavalent chromium from aqueous solution using column experiments. Result revealed that adsorption of chromium(VI) on eucalyptus bark carbon was endothermic in nature. Thermodynamic parameters such as the entropy change, enthalpy change and Gibbs free energy change were found to be 1.39 kJ mol−1 K−1, 1.08 kJ mol−1 and −3.85 kJ mol−1, respectively. Different chromium concentrations were used for the fixed bed adsorption studies. The pre- and post-treated adsorbents were characterized using a FTIR spectroscopic technique. It was concluded that Eucalyptus bark carbon column could be used effectively for removal of hexavalent chromium from aqueous solution at optimal column conditions. This study showed that this biological material is potential adsorbent of Cr(VI) from water.


2014 ◽  
Vol 86 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Dong M. Jia ◽  
Ya P. Li ◽  
Yue J. Li ◽  
Yong G. Li ◽  
Chang H. Li

2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


2019 ◽  
Vol 79 (9) ◽  
pp. 1755-1765 ◽  
Author(s):  
Drishti Bhatia ◽  
Sakshi Batra ◽  
Dipaloy Datta

Abstract Activated carbon (AC) is the most commonly used adsorbent for water purification, although the dispersive nature of AC in aqueous solution poses a serious problem. To overcome this limitation, AC was magnetized with iron oxide using iron salts as precursor. Further to enhance its effectiveness, it was impregnated with Aliquat 336. Different characterization techniques (Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), along with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD)) were used to analyze the adsorbent. Furthermore, the value of the pH at which the overall charge on the surface of the adsorbent is neutral was found by pH drift method. The modified form of the activated carbon was used to treat the aqueous solution of bisphenol-A in the batch as well as in the continuous mode of operation. In batch mode, the data were validated using equilibrium and kinetic models, and in continuous mode, data were fitted with the Thomas, Adams-Bohart, and bed depth service time (BDST) fixed bed adsorption models. Also, the changes in Gibb's free energy, enthalpy, and entropy were estimated from the temperature study. The design of an adsorption column is proposed to treat 10,000 L/day of an industrial effluent containing BPA.


Sign in / Sign up

Export Citation Format

Share Document