scholarly journals A higher bacterial inward BCAA transport driven by Faecalibacterium prausnitzii is associated with lower serum levels of BCAA in early adolescents

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Sofia Moran-Ramos ◽  
Luis Macias-Kauffer ◽  
Blanca E. López-Contreras ◽  
Hugo Villamil-Ramírez ◽  
Elvira Ocampo-Medina ◽  
...  

Abstract Background Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. Methods Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10–12 years old) and amino acid targeted metabolomics analysis was performed by LC–MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. Results We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). Conclusions We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.

Metabolomics ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Elisabeth Müllner ◽  
Hanna E. Röhnisch ◽  
Claudia von Brömssen ◽  
Ali A. Moazzami

Abstract Introduction Hyperinsulinaemia and insulin resistance (IR) are strongly associated with obesity and are forerunners of type 2 diabetes. Little is known about metabolic alterations separately associated with obesity, hyperinsulinaemia/IR and impaired glucose tolerance (IGT) in adolescents. Objectives To identify metabolic alterations associated with obesity, hyperinsulinaemia/IR and hyperinsulinaemia/IR combined with IGT in obese adolescents. Methods 81 adolescents were stratified into four groups based on body mass index (lean vs. obese), insulin responses (normal insulin (NI) vs. high insulin (HI)) and glucose responses (normal glucose tolerance (NGT) vs. IGT) after an oral glucose tolerance test (OGTT). The groups comprised: (1) healthy lean with NI and NGT, (2) obese with NI and NGT, (3) obese with HI and NGT, and (4) obese with HI and IGT. Targeted nuclear magnetic resonance-based metabolomics analysis was performed on fasting and seven post-OGTT plasma samples, followed by univariate and multivariate statistical analyses. Results Two groups of metabolites were identified: (1) Metabolites associated with insulin response level: adolescents with HI (groups 3–4) had higher concentrations of branched-chain amino acids and tyrosine, and lower concentrations of serine, glycine, myo-inositol and dimethylsulfone, than adolescents with NI (groups 1–2). (2) Metabolites associated with obesity status: obese adolescents (groups 2–4) had higher concentrations of acetylcarnitine, alanine, pyruvate and glutamate, and lower concentrations of acetate, than lean adolescents (group 1). Conclusions Obesity is associated with shifts in fat and energy metabolism. Hyperinsulinaemia/IR in obese adolescents is also associated with increased branched-chain and aromatic amino acids.


2019 ◽  
Vol 77 ◽  
pp. 12-16 ◽  
Author(s):  
Francesca Arfuso ◽  
Anna Assenza ◽  
Francesco Fazio ◽  
Maria Rizzo ◽  
Claudia Giannetto ◽  
...  

2020 ◽  
Vol 40 ◽  
pp. 277-281
Author(s):  
Eduardo Emanuel Sátiro Vieira ◽  
Irislene Costa Pereira ◽  
Amanda Ferraz Braz ◽  
Marcus Vinicius Nascimento-Ferreira ◽  
Lucillia Rabelo de Oliveira Torres ◽  
...  

2013 ◽  
Vol 7 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Jingyi Lu ◽  
Guoxiang Xie ◽  
Weiping Jia ◽  
Wei Jia

2004 ◽  
Vol 82 (7) ◽  
pp. 506-514 ◽  
Author(s):  
Enoka P Wijekoon ◽  
Craig Skinner ◽  
Margaret E Brosnan ◽  
John T Brosnan

We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, α-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.Key words: plasma amino acids, liver amino acids, muscle amino acids, gluconeogenesis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xue Zhao ◽  
Xiaokun Gang ◽  
Yujia Liu ◽  
Chenglin Sun ◽  
Qing Han ◽  
...  

A growing body of evidence has shown the intimate relationship between metabolomic profiles and insulin resistance (IR) in obese adults, while little is known about childhood obesity. In this review, we searched available papers addressing metabolomic profiles and IR in obese children from inception to February 2016 on MEDLINE, Web of Science, the Cochrane Library, ClinicalTrials.gov, and EMASE. HOMA-IR was applied as surrogate markers of IR and related metabolic disorders at both baseline and follow-up. To minimize selection bias, two investigators independently completed this work. After critical selection, 10 studies (including 2,673 participants) were eligible and evaluated by using QUADOMICS for quality assessment. Six of the 10 studies were classified as “high quality.” Then we generated all the metabolites identified in each study and found amino acid metabolism and lipid metabolism were the main affected metabolic pathways in obese children. Among identified metabolites, branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and acylcarnitines were reported to be associated with IR as biomarkers most frequently. Additionally, BCAAs and tyrosine seemed to be relevant to future metabolic risk in the long-term follow-up cohorts, emphasizing the importance of early diagnosis and prevention strategy. Because of limited scale and design heterogeneity of existing studies, future studies might focus on validating above findings in more large-scale and longitudinal studies with elaborate design.


Sign in / Sign up

Export Citation Format

Share Document