scholarly journals Neural-Fuzzy-Based Adaptive Sliding Mode Automatic Steering Control of Vision-based Unmanned Electric Vehicles

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jinghua Guo ◽  
Keqiang Li ◽  
Jingjing Fan ◽  
Yugong Luo ◽  
Jingyao Wang

AbstractThis paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain parameters. Primarily, the kinematic and dynamic models which accurately express the steering behaviors of vehicles are constructed, and in which the relationship between the look-ahead time and vehicle velocity is revealed. Then, in order to overcome the external disturbances, parametric uncertainties and time-varying features of vehicles, a neural-fuzzy-based adaptive sliding mode automatic steering controller is proposed to supervise the lateral dynamic behavior of unmanned electric vehicles, which includes an equivalent control law and an adaptive variable structure control law. In this novel automatic steering control system of vehicles, a neural network system is utilized for approximating the switching control gain of variable structure control law, and a fuzzy inference system is presented to adjust the thickness of boundary layer in real-time. The stability of closed-loop neural-fuzzy-based adaptive sliding mode automatic steering control system is proven using the Lyapunov theory. Finally, the results illustrate that the presented control scheme has the excellent properties in term of error convergence and robustness.

2020 ◽  
Author(s):  
Jinghua Guo ◽  
Keqiang Li ◽  
Jinjin Fan ◽  
Yugong Luo ◽  
Jingyao Wang

Abstract This paper presents a novel neural-fuzzy-based adaptive sliding mode automatic steering control strategy to improve the driving performance of vision-based unmanned electric vehicles with time-varying and uncertain parameters. Primarily, the kinematic and dynamic models which accurately express the steering behaviors of vehicles are constructed, and in which the relationship between the look-ahead time and vehicle velocity is revealed. Then, in order to overcome the external disturbances, parametric uncertainties and time-varying features of vehicles, a neural-fuzzy-based adaptive sliding mode automatic steering controller is proposed to surprise the lateral dynamic behavior of unmanned electric vehicles, which includes an equivalent control law and an adaptive variable structure control law. In this novel automatic steering control system of vehicles, a neural network system is utilized for approximating the switching control gain of variable structure control law, and a fuzzy inference system is presented to adjust the thickness of boundary layer in real-time. The stability of closed-loop neural-fuzzy-based adaptive sliding mode automatic steering control system is proven using the Lyapunov theory. Finally, The results illustrate that the presented control scheme has the excellent properties in term of error convergence and robustness.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 282 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Thanh Long Duong ◽  
Minh Quan Duong ◽  
Duc Tung Le

Variable structure control with sliding mode can provide good control performance and excellent robustness. Unfortunately, the chattering phenomenon investigated due to discontinuous switching gain restricting their applications. In this paper, a chattering free improved variable structure control (IVSC) for a class of mismatched uncertain interconnected systems with an unknown time-varying delay is proposed. A sliding function is first established to eliminate the reaching phase in traditional variable structure control (TVSC). Next, a new reduced-order sliding mode estimator (ROSME) without time-varying delay is constructed to estimate all unmeasurable state variables of plants. Then, based on the Moore-Penrose inverse approach, a decentralized single-phase robustness sliding mode controller (DSPRSMC) is synthesized, which is independent of time delays. A DSPRSMC solves a complex interconnection problem with an unknown time-varying delay term and drives the system’s trajectories onto a switching surface from the initial time instance. Particularly, by applying the well-known Barbalat’s lemma, the chattering phenomenon in control input is alleviated. Moreover, a sufficient condition is established by using an appropriate Lyapunov theory and linear matrix inequality (LMI) method such that a sliding mode dynamics is asymptotically stable from the beginning time. Finally, a developed method is validated by numerical example with computer simulations.


Author(s):  
Pournami Padmalatha ◽  
Susy Thomas

In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished<br />by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively<br />coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.<br /><br />


2005 ◽  
Vol 15 (07) ◽  
pp. 2235-2246 ◽  
Author(s):  
HER-TERNG YAU ◽  
JUI-SHENG LIN ◽  
JUN-JUH YAN

This paper investigates the chaos synchronization problem for a class of uncertain master-slave chaotic systems. Based on the variable structure control theory, a strategy is proposed to guarantee the occurrence of a sliding mode motion of error states when the proposed control law is applied. As expected, the error state is able to drive to zero with match external uncertainties or into a predictable neighborhood of zero with mismatch external uncertainties. Furthermore, a modified continuous sliding mode controller is also proposed to avoid the chattering. Examples of Lorenz system and Chua's circuit are presented to demonstrate the obtained results.


2014 ◽  
Vol 1028 ◽  
pp. 186-190
Author(s):  
Hong Cheng Zhou ◽  
Zhi Peng Jiang

The servo control methods of 6-DOF motion configuration are researched. Based on analysis for characteristic of the motion configuration, the control strategy and control law used on the motion control system are presented. The controller in velocity tracking loop and location loop are respectively designed by frequency correcting method and normal control method which belongs to classical control theory. Sliding mode variable structure control method is presented for location control law designing, against the super low velocity creep caused by friction disturbance, so that the problem of location control loop low velocity creeping is solved, and a simulating experimentation demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document