scholarly journals Enhancement of Photoluminescence from Semiconducting Nanotubes in Aqueous Suspensions due to Cysteine and Dithiothreitol Doping: Influence of the Sonication Treatment

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikita V. Kurnosov ◽  
Victor S. Leontiev ◽  
Victor A. Karachevtsev
2013 ◽  
Vol 0 (1) ◽  
pp. 122
Author(s):  
K. Toshtay ◽  
Kuanyshbek Mussabekov ◽  
S. Kumargaliyeva ◽  
С. Turganbay ◽  
Inal Bakhytkyzy

2021 ◽  
Vol 13 (12) ◽  
pp. 6739
Author(s):  
Darko Landek ◽  
Lidija Ćurković ◽  
Ivana Gabelica ◽  
Mihone Kerolli Mustafa ◽  
Irena Žmak

In this work, alumina (Al2O3) ceramics were prepared using an environmentally friendly slip casting method. To this end, highly concentrated (70 wt.%) aqueous suspensions of alumina (Al2O3) were prepared with different amounts of the ammonium salt of a polycarboxylic acid, Dolapix CE 64, as an electrosteric dispersant. The stability of highly concentrated Al2O3 aqueous suspensions was monitored by viscosity measurements. Green bodies (ceramics before sintering) were obtained by pouring the stable Al2O3 aqueous suspensions into dry porous plaster molds. The obtained Al2O3 ceramic green bodies were sintered in the electric furnace. Analysis of the effect of three sintering parameters (sintering temperature, heating rate and holding time) on the density of alumina ceramics was performed using the response surface methodology (RSM), based on experimental data obtained according to Box–Behnken experimental design, using the software Design-Expert. From the statistical analysis, linear and nonlinear models with added first-order interaction were developed for prediction and optimization of density-dependent variables: sintering temperature, heating rate and holding time.


ACS Omega ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 5197-5208
Author(s):  
Damián Rodríguez Sartori ◽  
Marcos Bertuola ◽  
Alejandro Miñán ◽  
Eduardo Gonik ◽  
Mónica C. Gonzalez ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 136 ◽  
Author(s):  
Andreas Mautner ◽  
Thawanrat Kobkeatthawin ◽  
Florian Mayer ◽  
Christof Plessl ◽  
Selestina Gorgieva ◽  
...  

Water hardness not only constitutes a significant hazard for the functionality of water infrastructure but is also associated with health concerns. Commonly, water hardness is tackled with synthetic ion-exchange resins or membranes that have the drawbacks of requiring the awkward disposal of saturated materials and being based on fossil resources. In this work, we present a renewable nanopaper for the purpose of water softening prepared from phosphorylated TEMPO-oxidized cellulose nanofibrils (PT-CNF). Nanopapers were prepared from CNF suspensions in water (PT-CNF nanopapers) or low surface tension organic liquids (ethanol), named EPT-CNF nanopapers, respectively. Nanopaper preparation from ethanol resulted in a significantly increased porosity of the nanopapers enabling much higher permeances: more than 10,000× higher as compared to nanopapers from aqueous suspensions. The adsorption capacity for Ca2+ of nanopapers from aqueous suspensions was 17 mg g−1 and 5 mg g−1 for Mg2+; however, EPT-CNF nanopapers adsorbed more than 90 mg g−1 Ca2+ and almost 70 mg g−1 Mg2+. The higher adsorption capacity was a result of the increased accessibility of functional groups in the bulk of the nanopapers caused by the higher porosity of nanopapers prepared from ethanol. The combination of very high permeance and adsorption capacity constitutes a high overall performance of these nanopapers in water softening applications.


Sign in / Sign up

Export Citation Format

Share Document