scholarly journals One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Baoyun Ye ◽  
Chongwei An ◽  
Yuruo Zhang ◽  
Changkun Song ◽  
Xiaoheng Geng ◽  
...  
2018 ◽  
Vol 101 ◽  
pp. 211-217 ◽  
Author(s):  
Miroslav Huskić ◽  
Silvester Bolka ◽  
Alenka Vesel ◽  
Miran Mozetič ◽  
Alojz Anžlovar ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 41
Author(s):  
Farzaneh Farivar ◽  
Pei Lay Yap ◽  
Ramesh Udayashankar Karunagaran ◽  
Dusan Losic

Thermogravimetric analysis (TGA) has been recognized as a simple and reliable analytical tool for characterization of industrially manufactured graphene powders. Thermal properties of graphene are dependent on many parameters such as particle size, number of layers, defects and presence of oxygen groups to improve the reliability of this method for quality control of graphene materials, therefore it is important to explore the influence of these parameters. This paper presents a comprehensive TGA study to determine the influence of different particle size of the three key materials including graphene, graphene oxide and graphite on their thermal parameters such as carbon decomposition range and its temperature of maximum mass change rate (Tmax). Results showed that Tmax values derived from the TGA-DTG carbon combustion peaks of these materials increasing from GO (558–616 °C), to graphene (659–713 °C) and followed by graphite (841–949 °C) The Tmax values derived from their respective DTG carbon combustion peaks increased as their particle size increased (28.6–120.2 µm for GO, 7.6–73.4 for graphene and 24.2–148.8 µm for graphite). The linear relationship between the Tmax values and the particle size of graphene and their key impurities (graphite and GO) confirmed in this study endows the use of TGA technique with more confidence to evaluate bulk graphene-related materials (GRMs) at low-cost, rapid, reliable and simple diagnostic tool for improved quality control of industrially manufactured GRMs including detection of “fake” graphene.


RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 19657-19661 ◽  
Author(s):  
C. Ashok raja ◽  
S. Balakumar ◽  
D. Durgalakshmi ◽  
R. P. George ◽  
B. Anandkumar ◽  
...  

45S5 Bioglass with a mean particle size in the nano regime was synthesized and fabricated with rGO sheets using three different strategies.


Sign in / Sign up

Export Citation Format

Share Document