scholarly journals All-Optical Tuning of Light in WSe2-Coated Microfiber

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhiran Shen ◽  
He Zhu ◽  
Jiyu Hong ◽  
Xun Gui ◽  
Heyuan Guan ◽  
...  

AbstractThe tungsten diselenide (WSe2) has attracted considerable interest owing to their versatile applications, such as p-n junctions, transistors, fiber lasers, spintronics, and conversion of solar energy into electricity. We demonstrate all-optical tuning of light in WSe2-coated microfiber (MF) using WSe2’s broad absorption bandwidth and thermo-optic effect. The transmitted optical power (TOP) can be tuned using external incidence pump lasers (405, 532, and 660 nm). The sensitivity under 405-nm pump light excitation is 0.30 dB/mW. A rise/fall time of ~ 15.3/16.9 ms is achieved under 532-nm pump light excitation. Theoretical simulations are performed to investigate the tuning mechanism of TOP. The advantages of this device are easy fabrication, all-optical control, high sensitivity, and fast response. The proposed all-optical tunable device has potential applications in all-optical circuitry, all-optical modulator, and multi-dimensionally tunable optical devices, etc.

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2387-2396 ◽  
Author(s):  
Zijian Zhang ◽  
Guowei Chen ◽  
Mingyu Yang ◽  
Yunyao Ou ◽  
Luqi Luo ◽  
...  

AbstractTwo-dimensional material tungsten diselenide (WSe2) nanosheets are coated on a microfibre knot resonator (MKR) to achieve an all-optical power modulation functionality. On account of the strong absorption property of WSe2 and the resonance enhancement properties of MKR, the transmitted optical power of signal light within the WSe2-based MKR can be effectively modulated. The sensitivities of light–control–light experiments with 405- and 660-nm lasers are as high as 0.32 and 0.12 dB/mW, respectively. The sensitivities and power tuning can be enhanced by a higher resonance Q and a larger extinction ratio of MKR. In terms of the response time, the average rise and fall times are 3.5/3.7 and 3.5/4 ms with 405- and 660-nm lasers, respectively. This proposed structure is expected to achieve potential applications in all-fibre-optic–based tunable device such as optical modulator, detector, and so on.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Xue Nie ◽  
Peihong Deng ◽  
Haiyan Wang ◽  
Yougen Tang

A glassy carbon electrode (GCE) was modified with nitrogen-doped carbon materials (NC) and polyethyleneimine (PEI) composites to design an electrochemical sensor for detecting 4-nitrophenol (4-NP). The NC materials were prepared by a simple and economical method through the condensation and carbonization of formamide. The NC materials were dispersed in a polyethyleneimine (PEI) solution easily. Due to the excellent properties of NC and PEI as well as their synergistic effect, the electrochemical reduction of the 4-NP on the surface of the NC–PEI composite modified electrode was effectively enhanced. Under the optimized conditions, at 0.06–10 μM and 10–100 μM concentration ranges, the NC–PEI/GCE sensor shows a linear response to 4-NP, and the detection limit is 0.01 μM (the signal-to-noise ratio is three). The reliability of the sensor for the detection of 4-NP in environmental water samples was successfully evaluated. In addition, the sensor has many advantages, including simple preparation, fast response, high sensitivity and good repeatability. It may be helpful for potential applications in detecting other targets.


2019 ◽  
Vol 26 (07) ◽  
pp. 1830010
Author(s):  
FEI FANG ◽  
FANFEI MIN ◽  
CHANGGUO XUE ◽  
JIA DU

The main purpose of this review is to present a new method to study the adsorption mechanism of reagents on mineral surfaces based on a microcantilever sensor system. The mechanisms of micro/nanoscale adsorption are of great significance in the interface sorting of minerals in the field of mineral processing. The sensing technique based on a microcantilever has become attractive with the advantages of label-free detection, high sensitivity, high-throughput, and fast response time. This review first discusses the structure, working principle, working modes, detection methods, and reported applications of microcantilever sensors. When combined with the working principle and applications, microcantilever sensors can monitor the adsorption process of reagents on mineral surfaces in real time. In the second part of this review, we will discuss the potential applications of microcantilever sensors in the interfacial adsorption of minerals.


2020 ◽  
Vol 6 (21) ◽  
pp. eaao0019 ◽  
Author(s):  
Te Wen ◽  
Weidong Zhang ◽  
Shuai Liu ◽  
Aiqin Hu ◽  
Jingyi Zhao ◽  
...  

Monolayer transition metal dichalcogenides have intrinsic spin-valley degrees of freedom, making it appealing to exploit valleytronic and optoelectronic applications at the nanoscale. Here, we demonstrate that a chiral plasmonic antenna consisting of two stacked gold nanorods can modulate strongly valley-polarized photoluminescence (PL) of monolayer MoS2 in a broad spectral range at room temperature. The valley-polarized PL of the MoS2 using the antenna can reach up to ~47%, with approximately three orders of PL magnitude enhancement within the plasmonic nanogap. Besides, the K and K′ valleys under opposite circularly polarized light excitation exhibit different emission intensities and directivities in the far field, which can be attributed to the modulation of the valley-dependent excitons by the chiral antenna in both the excitation and emission processes. The distinct features of the ultracompact hybrid suggest potential applications for valleytronic and photonic devices, chiral quantum optics, and high-sensitivity detection.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1973-1979 ◽  
Author(s):  
Zhao Cheng ◽  
Rui Cao ◽  
Jia Guo ◽  
Yuhan Yao ◽  
Kangkang Wei ◽  
...  

AbstractAll-optical modulators avoid the conversion from external electronic signals to optical signals and thus have the potential to achieve an energy-efficient high-speed photonic system. Phosphorene recently debuted as an attractive material that exhibits outstanding high electron mobility, strong light-matter interaction and modifiable bandgap, making it ideal for all-optical modulators. In this paper, by incorporating a phosphorene and silicon-based micro-ring resonator (MRR), we first propose and experimentally demonstrate a unique phosphorene-integrated all-optical modulator in telecommunications. By utilizing a phosphorene thin film with an average thickness of 22 nm as the absorption material, the rise time of only 479 ns and decay time of 113 ns are achieved, which is the fastest reported response time in the family of phosphorene modulators. The corresponding 3 dB bandwidth is larger than 2.5 MHz, and it exhibits a low-loss performance benefited from its finite bandgap. The proposed phosphorene/MRR hybrid modulator may have potential in the applications of all-optical interconnections.


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 648
Author(s):  
Aijie Liang ◽  
Jingyuan Ming ◽  
Wenguo Zhu ◽  
Heyuan Guan ◽  
Xinyang Han ◽  
...  

Breath monitoring is significant in assessing human body conditions, such as cardiac and pulmonary symptoms. Optical fiber-based sensors have attracted much attention since they are immune to electromagnetic radiation, thus are safe for patients. Here, a microfiber (MF) humidity sensor is fabricated by coating tin disulfide (SnS2) nanosheets onto the surface of MF. The small diameter (~8 μm) and the long length (~5 mm) of the MF promise strong interaction between guiding light and SnS2. Thus, a small variation in the relative humidity (RH) will lead to a large change in optical transmitted power. A high RH sensitivity of 0.57 dB/%RH is therefore achieved. The response and recovery times are estimated to be 0.08 and 0.28 s, respectively. The high sensitivity and fast response speed enable our SnS2-MF sensor to monitor human breath in real time.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1915
Author(s):  
Shenawar Ali Khan ◽  
Muhammad Saqib ◽  
Muhammad Muqeet Rehman ◽  
Hafiz Mohammad Mutee Ur Rehman ◽  
Sheik Abdur Rahman ◽  
...  

A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8–98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.


Sign in / Sign up

Export Citation Format

Share Document