scholarly journals Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanli Chu ◽  
Ning Xu ◽  
Qi Wu ◽  
Bo Yu ◽  
Xingxing Li ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102529 ◽  
Author(s):  
Yuhui Cai ◽  
Xujun Chen ◽  
Ke Xie ◽  
Qikai Xing ◽  
Yawen Wu ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8192
Author(s):  
Xiaoshuang Wei ◽  
Hailian Zhou ◽  
Deying Xie ◽  
Jianguo Li ◽  
Mingchong Yang ◽  
...  

Semi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor OsWRKY21 (LOC_Os01g60640). Interestingly, further haplotype analysis showed that C/T difference only existed in the indica group but not in the japonica group, resulting in significant differences in plant height among the different indica rice varieties. OsWRKY21 was expressed in embryo, radicle, shoots, leaves, and stems. Most notably, overexpressing OsWRKY21 resulted in the semi-dwarf phenotype, early heading date and short internodes compared to the wild type, while the knockout mutant plants by CRISPR/Cas9 technology yielded the opposite. The overexpressing lines exhibited the decreased length of the cells near sclerenchyma epidermis, accompanied with the lower levels of indole-3-acetic acid (IAA) and gibberellin 3 (GA3), but increased levels of the abscisic acid (ABA) and salicylic acid (SA) in the internodes at heading stage. Moreover, the semi-dwarf phenotype could be fully rescued by exogenous GA3 application at seedling stage. The RNA-seq and qRT-PCR analysis confirmed the differential expression levels of genes in development and the stress responses in rice, including GA metabolism (GA20ox2, GA2ox6, and YABY1) and cell wall biosynthesis (CesA4, 7, and 9) and regulation (MYB103L). These data suggest the essential role of OsWRKY21 in regulation of internode elongation and plant height in rice.


2020 ◽  
Author(s):  
Jie Cao ◽  
Kaiye Liu ◽  
Wanjun Song ◽  
Jianing Zhang ◽  
Yingyin Yao ◽  
...  

Abstract Background SQUAMOSA PROMOTER-BINDING PROTEIN-BOX gene OsSPL14 from rice is evaluated as the major gene for ideal plant architecture consisting of few unproductive tillers, more grains per spike and high lodging resistance stems. However, the function of its orthologous gene TaSPL14 in wheat is still unknown. Results Here, we reported the similarity and variation between TaSPL14 and OsSPL14. Similar to OsSPL14, TaSPL14 knock-out mutants exhibited decreased plant height, spike length, spikelet number, thousand-grain weight. Different from OsSPL14, TaSPL14 had no effect on tiller number. Transcriptome analysis genes related to ethylene response were significantly decreased in young spikes of TaSPL14 knockout mutants, compared with wild type. TaSPL14 directly binds to the promoters of the ethylene response gene TaEIL1 (EIN3-LIKE 1), TaRAP2.11 (ETHYLENE-RESPNSIVE TRANSCRIPTION FACTOR 2.11) and TaERF1 (ETHYLENE-RESPNSIVE TRANSCRIPTION FACTOR 1) and activities their expression, suggesting that TaSPL14 might regulate wheat spike development through ethylene response pathway. Conclusions TaSPL14 had similar function with OsSPL14 in regulating plant height, spike length, spikelet number and thousand-grain weight of wheat, and had different function in tiller development. TaSPL14 might regulate spike development through TaEIL1, TaRAP2.11 and TaERF1, not TaDEP1.The elucidation of TaSPL14 will contribute to exploring the molecular mechanisms underlying plant architecture of wheat.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ziming Ma ◽  
Tao Wu ◽  
Kai Huang ◽  
Yong-Mei Jin ◽  
Zhao Li ◽  
...  

2015 ◽  
Vol 82 (2) ◽  
pp. 302-314 ◽  
Author(s):  
Xu Chen ◽  
Songchong Lu ◽  
Yaofeng Wang ◽  
Xuan Zhang ◽  
Bo Lv ◽  
...  

Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

Sign in / Sign up

Export Citation Format

Share Document