scholarly journals Human health risk exposure and ecological risk assessment of potentially toxic element pollution in agricultural soils in the district of Frydek Mistek, Czech Republic: a sample location approach

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Prince Chapman Agyeman ◽  
Kingsley John ◽  
Ndiye Michael Kebonye ◽  
Luboš Borůvka ◽  
Radim Vašát ◽  
...  

Abstract Background Human activities considerably contribute to polluting potentially toxic element (PTEs) levels in soils, especially agricultural soils. The consistent introduction of PTEs in the environment and the soil pose health-related risks to humans, flora and fauna. One hundred and fifteen samples were collected in the district of Frydek Mistek (Czech Republic) in a regular grid form. The soil samples were air-dried, and the concentrations of PTEs (i.e. lead, arsenic, chromium, nickel, manganese, cadmium, copper, and zinc) were determined by ICP-OES (inductively coupled plasma optical emission spectrometry). The purpose of this study is to create digitized soil maps that expose the human-related health risks posed by PTEs, estimate pollution indices, ascertain the spatially distributed patterns of PTEs, source apportionment and quantify carcinogenic and non-carcinogenic health risks using the sample location approach. Results The results revealed that the pollution assessment of the soils in the study area using diverse pollution assessment indexes (pollution index, pollution load index, ecological risk and risk index), based on the application of the local background value and the European average value, displayed a range of pollution levels due to differences in the threshold limits from differing geochemical background levels. The principal components analysis and positive matrix factorization, respectively, identified the sources of pollution and the distribution of PTE sources. Mapping the health index and total carcinogenic risk highlighted hotspots of areas within the study area that require immediate remediation. The self-organizing map (SeOM) revealed a diversified colour pattern for the factor scores. A single neuron exhibited a high hotspot in all factor loadings on different blocks of neurons. Children’s CDItotal (Chronic Daily Intake total) values for non-carcinogenic risk and carcinogenic risk were found to be greater than adults’, as were their HQ (hazard quotients) and CR (carcinogenic risk) values. According to the health index of non-carcinogenic risk, 6.1% of the study area sampled posed a potential risk to children rather than adults. Corresponding to the sampled pointwise health risk assessment, 13.05% of the sampled locations are carcinogenic to children. The estimated health risk in the agricultural soil was high, with both carcinogenic and non-carcinogenic risks that could threaten persons living in the study area, particularly children. Conclusion In general, the continuous application of agriculturally related inputs such as phosphate fertilizers and other anthropogenic activities (e.g., steel industry) can increase the level of PTEs in soils. The use of mean, maximum, and minimum values in health risk estimation does not provide a comprehensive picture of a research area’s health state. This study recommends using a sampled pointwise or location health risks assessment approach, which allows researchers to identify high-risk environments that exceeds the recommended threshold as well as areas on the verge of becoming high risk, allowing for rapid remedial action.

Author(s):  
Xin Luo ◽  
Bozhi Ren ◽  
Andrew S. Hursthouse ◽  
Jonathan R. M. Thacker ◽  
Zhenghua Wang

This study assessed the significance and potential impact of potentially toxic element (PTE) (i.e., Mn, Pb, Cu, Zn, Cr, Cd, and Ni) pollution in the surface soil from an abandoned manganese mining area in Xiangtan City, Hunan Province, China, on the health of residents. The risks were sequentially evaluated using a series of protocols including: the geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (RI), and implications for human health from external exposures using the hazard quotient (HQ), hazard index (HI) and carcinogenic risk (CR). The results revealed that Mn and Cd were the major pollutants in the soil samples. The ecological risk assessment identified moderate risks, which were mainly derived from Cd (82.91%). The results of the health risk assessment revealed that generally across the area, the non-carcinogenic risk was insignificant, and the carcinogenic risk was at an acceptable level. However, due to local spatial fluctuation, some of the sites presented a non-carcinogenic risk to children. The soil ingestion pathway is the main route of exposure through both non-carcinogenic and carcinogenic risks, with Mn being the major contributor to non-carcinogenic risk, with Cr and Cd the major contributors to carcinogenic risk. In addition, three pollution sources were identified through the Pearson correlation coefficient and principal component analysis (PCA), which included: a. mining activities and emissions from related transportation; b. natural background; c. agricultural management practices and municipal sewage discharge. The study provides information on the effects of spatial variation for the development of the abandoned mining areas and a useful approach to the prioritization of locations for the development and utilization of soil in these areas in China.


2017 ◽  
Vol 33 (8) ◽  
pp. 655-672 ◽  
Author(s):  
◽  
Abida Farooqi ◽  
Jawairia Sultana ◽  
Noshin Masood

Release of arsenic (As) and fluoride (F−) species into groundwater is a serious health concern around the world. The present study was the first systematic baseline study conducted in Rahim Yar Khan district, Punjab, focusing on As and F− contamination in groundwater. A total of 51 representative groundwater samples comprising of 44 samples from agricultural suburbs and 7 from an industrial base were analysed. Statistical parameters, principal component analysis-multiple linear regression (PCA-MLR) and health risk assessment model were used to investigate the hydro geochemistry, spatial patterns, interrelation, source contribution and associated health risks of high As and F− in groundwater of the study area. Results showed high risk of F− exposure to people of the study area, with all samples exceeding the WHO standard of 1.5 mg/L, and for As, 32.5% of the studied groundwater samples exceeded the WHO standard (10 µg/L). The maximum As (107.23 µg/L) and F− (26.4 mg/L) levels were observed in samples close to the agricultural and smelting areas, implicating the frequent use of fertilizers and influence of industrial effluents in the study area. The PCA-MLR receptor model quantitatively illustrates that the majority of As and F− comes from natural sources, while, among anthropogenic sources, industrial and agricultural activities contributed the most. Health risk assessment revealed a high risk of As and F− contamination to the exposed population; therefore, detailed control strategies and policies are required in order to mitigate the health risks.


2019 ◽  
Vol 11 (18) ◽  
pp. 4828 ◽  
Author(s):  
Na Wang ◽  
Jichang Han ◽  
Yang Wei ◽  
Gang Li ◽  
Yingying Sun

Xunyang is rich in various metal minerals and is one of the four major metal mining areas in Shaanxi province, China. To explore the effects of soil heavy metals and metalloid pollution on the environment and human health around the mining areas, four places—Donghecun (D), Gongguan (G), Qingtonggou (Q) and Nanshagou (N)—were selected as the sampling sites. Potential ecological risk (PER) and health risk assessment (HRA) models were used to analyze the environmental and health risks around the mining areas. The concentration of heavy metals (Cd, Cr, Pb, Zn, Ni, Cu, Hg) and metalloid (As) in cultivated land in the vicinity of Xunyang mining areas indicated that, except for Cu, the remaining elements detected exceeded the threshold values at some sites. The geo-accumulation index (IGeo) revealed that soils in G and Q could be identified as being extremely contaminated. PER indicated that there was significantly high risk at G and Q for Hg. In N, Pb recorded the highest E r i , which also demonstrates a considerable pre-existing risk. HRA indicated that the hazard index (HI) for both carcinogenic and non-carcinogenic risks was much higher among children than among adults, and the ingestion pathway contributed the greatest risk to human health, followed by the dermal pathway and inhalation. Because the HI values of the metals and metalloid in the study areas were all lower than 1, there was no significant non-carcinogenic risk. However, the carcinogenic risk for Cr is relatively higher, surpassing the tolerable values in G, Q, and N. This study analyzed the ecological risks and human health risks of heavy metals and metalloid in farmland soils near the sampling mining areas, and demonstrated the importance of environmental changes caused by land development in the mining industry.


2014 ◽  
Vol 12 (6) ◽  
pp. 505-513 ◽  
Author(s):  
S. M. Phillips ◽  
R. E. Glasgow ◽  
G. Bello ◽  
M. G. Ory ◽  
B. A. Glenn ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 678
Author(s):  
Kai Zhang ◽  
XiaoNan Li ◽  
ZhenYu Song ◽  
JiaYu Yan ◽  
MengYue Chen ◽  
...  

Cadmium (Cd) is a highly carcinogenic metal that plays an important role in the risk management of soil pollution. In this study, 153 soil samples were collected from a coal chemical plant in northwest China, and the human health risks associated with Cd were assessed through multiple exposure pathways. Meanwhile, by the Kriging interpolation method, the spatial distribution and health risks of Cd were explored. The results showed that the average concentration of Cd in the soil was 0.540 mg/kg, which was 4.821 and 5.567 times that of the soil background value in Ningxia and China, respectively. In comparison, the concentration of Cd in the soil was below the national soil environmental quality three-level standard (1.0 mg/kg). In addition, health risk assessment results showed that the total carcinogenic risk of Cd was 1.269 × 10−6–2.189 × 10−6, both above the acceptable criteria (1 × 10−6), while the hazard quotient was within the acceptable level. Oral intake and ingestion of soil particles were the main routes of exposure, and the carcinogenic risk control value of oral intake was the lowest (0.392 mg/kg), which could be selected as the strict reference of the safety threshold for Cd in the coal chemical soil. From Kriging, a prediction map can be centrally predicted on heavy metal pollution in the area surrounding the coal entrance corridor and pedestrian entrance. This study can provide a theoretical basis for the determination of the heavy metal safety threshold of the coal chemical industry in China.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11853
Author(s):  
Xingyong Zhang ◽  
Qixin Wu ◽  
Shilin Gao ◽  
Zhuhong Wang ◽  
Shouyang He

Heavy metals are released into the water system through various natural processes and anthropogenic activities, thus indirectly or directly endangering human health. The distribution, source, water quality and health risk assessment of dissolved heavy metals (V, Mn, Fe, Co, Ni, Zn, As, Mo, Sb) in major rivers in Wuhan were analyzed by correlation analysis (CA), principal component analysis (PCA), heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR). The results showed that the spatial variability of heavy metal contents was pronounced. PCA and CA results indicated that natural sources controlled Mn, Fe, Co, Ni and Mo, and industrial emissions were the dominant factor for V, Zn and Sb, while As was mainly from the mixed input of urban and agricultural activities. According to the heavy metal pollution index (HPI, ranging from 23.74 to 184.0) analysis, it should be noted that As and Sb contribute most of the HPI values. The health risk assessment using HI and CR showed that V and Sb might have a potential non-carcinogenic risk and As might have a potential carcinogenic risk to adults and children in the study area (CR value exceeded target risk 10−4). At the same time, it was worth noting that As might have a potential non-carcinogenic risk for children around QLR (HI value exceeded the threshold value 1). The secular variation of As and Sb should be monitor in high-risk areas. The results of this study can provide important data for improving water resources management efficiency and heavy metal pollution prevention in Wuhan.


Author(s):  
Roscoe Taylor ◽  
Charles Guest

This chapter will help you to understand the environmental health in the rapidly changing context of health protection, the usefulness of having a framework for environmental health risk assessment, and the process of identifying, evaluating, and planning a response to an environmental health threat.


Sign in / Sign up

Export Citation Format

Share Document