scholarly journals Automated classification of protein subcellular localization in immunohistochemistry images to reveal biomarkers in colon cancer

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhen-Zhen Xue ◽  
Yanxia Wu ◽  
Qing-Zu Gao ◽  
Liang Zhao ◽  
Ying-Ying Xu

Abstract Background Protein biomarkers play important roles in cancer diagnosis. Many efforts have been made on measuring abnormal expression intensity in biological samples to identity cancer types and stages. However, the change of subcellular location of proteins, which is also critical for understanding and detecting diseases, has been rarely studied. Results In this work, we developed a machine learning model to classify protein subcellular locations based on immunohistochemistry images of human colon tissues, and validated the ability of the model to detect subcellular location changes of biomarker proteins related to colon cancer. The model uses representative image patches as inputs, and integrates feature engineering and deep learning methods. It achieves 92.69% accuracy in classification of new proteins. Two validation datasets of colon cancer biomarkers derived from published literatures and the human protein atlas database respectively are employed. It turns out that 81.82 and 65.66% of the biomarker proteins can be identified to change locations. Conclusions Our results demonstrate that using image patches and combining predefined and deep features can improve the performance of protein subcellular localization, and our model can effectively detect biomarkers based on protein subcellular translocations. This study is anticipated to be useful in annotating unknown subcellular localization for proteins and discovering new potential location biomarkers.

2020 ◽  
Vol 15 (6) ◽  
pp. 517-527
Author(s):  
Yunyun Liang ◽  
Shengli Zhang

Background: Apoptosis proteins have a key role in the development and the homeostasis of the organism, and are very important to understand the mechanism of cell proliferation and death. The function of apoptosis protein is closely related to its subcellular location. Objective: Prediction of apoptosis protein subcellular localization is a meaningful task. Methods: In this study, we predict the apoptosis protein subcellular location by using the PSSMbased second-order moving average descriptor, nonnegative matrix factorization based on Kullback-Leibler divergence and over-sampling algorithms. This model is named by SOMAPKLNMF- OS and constructed on the ZD98, ZW225 and CL317 benchmark datasets. Then, the support vector machine is adopted as the classifier, and the bias-free jackknife test method is used to evaluate the accuracy. Results: Our prediction system achieves the favorable and promising performance of the overall accuracy on the three datasets and also outperforms the other listed models. Conclusion: The results show that our model offers a high throughput tool for the identification of apoptosis protein subcellular localization.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fan Yang ◽  
Yang Liu ◽  
Yanbin Wang ◽  
Zhijian Yin ◽  
Zhen Yang

Abstract Background Protein subcellular localization plays a crucial role in understanding cell function. Proteins need to be in the right place at the right time, and combine with the corresponding molecules to fulfill their functions. Furthermore, prediction of protein subcellular location not only should be a guiding role in drug design and development due to potential molecular targets but also be an essential role in genome annotation. Taking the current status of image-based protein subcellular localization as an example, there are three common drawbacks, i.e., obsolete datasets without updating label information, stereotypical feature descriptor on spatial domain or grey level, and single-function prediction algorithm’s limited capacity of handling single-label database. Results In this paper, a novel human protein subcellular localization prediction model MIC_Locator is proposed. Firstly, the latest datasets are collected and collated as our benchmark dataset instead of obsolete data while training prediction model. Secondly, Fourier transformation, Riesz transformation, Log-Gabor filter and intensity coding strategy are employed to obtain frequency feature based on three components of monogenic signal with different frequency scales. Thirdly, a chained prediction model is proposed to handle multi-label instead of single-label datasets. The experiment results showed that the MIC_Locator can achieve 60.56% subset accuracy and outperform the existing majority of prediction models, and the frequency feature and intensity coding strategy can be conducive to improving the classification accuracy. Conclusions Our results demonstrate that the frequency feature is more beneficial for improving the performance of model compared to features extracted from spatial domain, and the MIC_Locator proposed in this paper can speed up validation of protein annotation, knowledge of protein function and proteomics research.


Sign in / Sign up

Export Citation Format

Share Document