scholarly journals RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation

BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna V. Klepikova ◽  
Maria D. Logacheva ◽  
Sergey E. Dmitriev ◽  
Aleksey A. Penin
2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


2019 ◽  
Vol 20 (23) ◽  
pp. 5933 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Jiangrong Peng ◽  
Zhike Zhang ◽  
Shoukai Lin ◽  
Shunquan Lin ◽  
...  

Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from ‘Jiefanzhong’ loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document