Faculty Opinions recommendation of RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments.

Author(s):  
Dario Leister ◽  
Tatjana Kleine
2018 ◽  
Author(s):  
Peter A. Combs ◽  
Joshua J. Krupp ◽  
Neil M. Khosla ◽  
Dennis Bua ◽  
Dmitri A. Petrov ◽  
...  

AbstractPheromones known as cuticular hydrocarbons are a major component of reproductive isolation in Drosophila. Individuals from morphologically similar sister species produce different sets of hydrocarbons that allow potential mates to identify them as a suitable partner. In order to explore the molecular mechanisms underlying speciation, we performed RNA-seq in F1 hybrids to measure tissue-specific cis-regulatory divergence between the sister species D. simulans and D. sechellia. By focusing on cis-regulatory changes specific to female oenocytes, we rapidly identified a small number of candidate genes. We found that one of these, the fatty acid elongase eloF, broadly affects both the complement of hydrocarbons present on D. sechellia females and the propensity of D. simulans males to mate with those females. In addition, knockdown of eloF in the more distantly related D. melanogaster led to a similar shift in hydrocarbons as well as lower interspecific mate discrimination by D. simulans males. Thus, cis-regulatory changes in eloF appear to be a major driver in the sexual isolation of D. simulans from multiple other species. More generally, our RNA-seq approach proved to be far more efficient than QTL mapping in identifying candidate genes; the same framework can be used to pinpoint cis-regulatory drivers of divergence in a wide range of traits differing between any interfertile species.


2018 ◽  
Author(s):  
Ivan D. Mateus ◽  
Frédéric G. Masclaux ◽  
Consolée Aletti ◽  
Edward C. Rojas ◽  
Romain Savary ◽  
...  

AbstractArbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organisation during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation plays a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype x genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna V. Klepikova ◽  
Maria D. Logacheva ◽  
Sergey E. Dmitriev ◽  
Aleksey A. Penin

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew E. Teschendorff ◽  
Ning Wang

Abstract Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.


2019 ◽  
Vol 29 (12) ◽  
pp. 2088-2103 ◽  
Author(s):  
Jacob C. Kimmel ◽  
Lolita Penland ◽  
Nimrod D. Rubinstein ◽  
David G. Hendrickson ◽  
David R. Kelley ◽  
...  

Author(s):  
Hiroki Yagi ◽  
Atsushi J Nagano ◽  
Jaewook Kim ◽  
Kentaro Tamura ◽  
Nobuyoshi Mochizuki ◽  
...  

Abstract Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.


Sign in / Sign up

Export Citation Format

Share Document