scholarly journals Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  
2020 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2020 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins participate in regulating of a series of biological and developmental processes in plants. Although several bHLH genes of citrus have been identified and previously characterized, a large number of bHLH members are still unknown.Results In this study, we genome-widely identified a total of 128 CgbHLHs from pummelo (Citrus grandis) that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 37 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, 22 of CgbHLHs were identified as the key candidates that respond to iron deficiency.Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Wu-yi Liu ◽  
Chun-jiang Zhao

Members of the basic helix-loop-helix (bHLH) family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus) genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ‘‘orphans’’. A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO) enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2513-2523 ◽  
Author(s):  
J.C. Cross ◽  
M.L. Flannery ◽  
M.A. Blanar ◽  
E. Steingrimsson ◽  
N.A. Jenkins ◽  
...  

Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal deciduum surrounding the implantation site. Overexpression of Hxt in mouse blastomeres directed their development into trophoblast cells in blastocysts. In addition, overexpression of Hxt induced the differentiation of rat trophoblast (Rcho-1) stem cells as assayed by changes in cell adhesion and by activation of the placental lactogen-I gene promoter, a trophoblast giant cell-specific gene. In contrast, the negative HLH regulator, Id-1, inhibited Rcho-1 differentiation and placental lactogen-I transcription. These data demonstrate a role for HLH factors in regulating trophoblast development and indicate a positive role for Hxt in promoting the formation of trophoblast giant cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


Sign in / Sign up

Export Citation Format

Share Document