scholarly journals Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoyan Zhang ◽  
Nana Su ◽  
Li Jia ◽  
Jiyuan Tian ◽  
Han Li ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Yi Li ◽  
Huayin Li ◽  
Fengde Wang ◽  
Jingjuan Li ◽  
Yihui Zhang ◽  
...  

Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher anthocyanin content, compared to the control group. Among all treatments, 5 μM of hematin was the optimal condition to promote color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction, phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information for regulating fruit color via anthocyanin biosynthesis in strawberries.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 445 ◽  
Author(s):  
Xingyuan Xi ◽  
Yuan Zong ◽  
Shiming Li ◽  
Dong Cao ◽  
Xuemei Sun ◽  
...  

The red flesh trait gives red pitayas more healthful components and a higher price, while the genetic mechanism behind this trait is unknown. In this manuscript, transcriptome analysis was employed to discover the genetic differences between white and red flesh in pitayas. A total of 27.99 Gb clean data were obtained for four samples. Unigenes, 79,049 in number, were generated with an average length of 1333 bp, and 52,618 Unigenes were annotated. Compared with white flesh, the expression of 10,215 Unigenes was up-regulated, and 4853 Unigenes were down-regulated in red flesh. The metabolic pathways accounted for 64.6% of all differentially expressed Unigenes in KEGG pathways. The group with high betalain content in red flesh and all structural genes, related to betalain biosynthesis, had a higher expression in red flesh than white flesh. The expression of the key gene, tyrosine hydroxylase CYP76AD1, was up-regulated 245.08 times, while 4,5-DOPA dioxygenase DODA was up-regulated 6.46 times. Moreover, the special isomers CYP76AD1α and DODAα were only expressed in red flesh. The competitive anthocyanin biosynthesis pathway had a lower expression in red flesh. Two MYB transcription factors were of the same branch as BvMYB1, regulating betalain biosynthesis in beet, and those transcription factors had expression differences in two kinds of pitayas, which indicated that they should be candidate genes controlling betalain accumulation in red pitayas. This research would benefit from identifying the major gene controlling red flesh trait and breed new cultivars with the red flesh trait. Future research should aim to prove the role of each candidate gene in betalain biosynthesis in red pitayas.


2014 ◽  
Author(s):  
Agnieszka Rak-Mardyla ◽  
Anna Wrobel ◽  
Eliza Drwal ◽  
Ewa Gregoraszczuk

Sign in / Sign up

Export Citation Format

Share Document