scholarly journals Genetic Diversity, Population Structure, and Linkage Disequilibrium of a Core Collection of Ziziphus jujuba Assessed with Genome-wide SNPs Developed by Genotyping-by-sequencing and SSR Markers

2017 ◽  
Vol 8 ◽  
Author(s):  
Wu Chen ◽  
Lu Hou ◽  
Zhiyong Zhang ◽  
Xiaoming Pang ◽  
Yingyue Li
BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Paul I. Otyama ◽  
Andrew Wilkey ◽  
Roshan Kulkarni ◽  
Teshale Assefa ◽  
Ye Chu ◽  
...  

2019 ◽  
Author(s):  
Tika B. Adhikari ◽  
Brian J. Knaus ◽  
Niklaus J. Grünwald ◽  
Dennis Halterman ◽  
Frank J. Louws

ABSTRACTGenotyping by sequencing (GBS) is considered a powerful tool to discover single nucleotide polymorphisms (SNPs), which are useful to characterize closely related genomes of plant species and plant pathogens. We applied GBS to determine genome-wide variations in a panel of 187 isolates of three closely related Alternaria spp. that cause diseases on tomato and potato in North Carolina (NC) and Wisconsin (WI). To compare genetic variations, reads were mapped to both A. alternata and A. solani draft reference genomes and detected dramatic differences in SNPs among them. Comparison of A. linariae and A. solani populations by principal component analysis revealed the first (83.8% of variation) and second (8.0% of variation) components contained A. linariae from tomato in NC and A. solani from potato in WI, respectively, providing evidence of population structure. Genetic differentiation (Hedrick’s G’ST) in A. linariae populations from Haywood, Macon, and Madison counties in NC were little or no differentiated (G’ST 0.0 - 0.2). However, A. linariae population from Swain county appeared to be highly differentiated (G’ST > 0.8). To measure the strength of the linkage disequilibrium (LD), we also calculated the allelic association between pairs of loci. Lewontin’s D (measures the fraction of allelic variations) and physical distances provided evidence of linkage throughout the entire genome, consistent with the hypothesis of non-random association of alleles among loci. Our findings provide new insights into the understanding of clonal populations on a genome-wide scale and microevolutionary factors that might play an important role in population structure. Although we found limited genetic diversity, the three Alternaria spp. studied here are genetically distinct and each species is preferentially associated with one host.


2021 ◽  
Author(s):  
Zhifei Zhao ◽  
Qinfei Song ◽  
Dingchen Bai ◽  
Suzhen Niu ◽  
Yingqin He ◽  
...  

Abstract Background Tea plants originated from the southwest of China. Guizhou is one of the origin center of tea plants, which is rich in tea plant germplasm resources. However, the distribution characteristics and transmission model of tea plant were still unclear. Results We collected 253 cultivated-type tea plant accessions from Guizhou plateau and analyzed the genetic diversity, PCA, phylogenetic, population structure, LD, and development of core collection using the genotyping-by-sequencing (GBS) approach. A total of 112,072 high-quality SNPs were identified, which was further used to analyze the genetic diversity and population structure. In this study, we found that the genetic diversity in cultivated-type tea accessions of PR Basin were significantly higher than that in cultivated-type tea accessions of YR Basin. Moreover, four groups, including three pure groups (CG-1, CG-2 and CG-3) and one admixture group (CG-4), were identified based on population structure analysis, which was verified by PAC and phylogenetic analysis. Our results showed that the highest GD and Fst values were found in CG-2 vs CG-3, followed by CG-1 vs CG-2 and CG-1 vs CG-3. The lowest GD and Fst values were detected in CG-4 vs CG-1, CG-4 vs CG-2, and CG-4 vs CG-3. Conclusions This study provided the evidence to confirm the contribution of PR and YR Basins and ancient hub road section to the transmission of cultivated-type tea accessions in Guizhou plateau. The genetic diversity, population structure and core collection revealed by our study will benefit further genetic studies, germplasm protection, and breeding.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shijing Feng ◽  
Zhenshan Liu ◽  
Yang Hu ◽  
Jieyun Tian ◽  
Tuxi Yang ◽  
...  

Abstract Chinese pepper, mainly including Zanthoxylum bungeanum and Zanthoxylum armatum, is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses. Numerous cultivars of Chinese pepper have been developed in China through long-term domestication. To better understand the population structure, demographic history, and speciation of Chinese pepper, we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genome-wide genotyping-by-sequencing (GBS) approach. Our analysis provides genetic evidence of multiple splitting events occurring between and within species, resulting in at least four clades in Z. bungeanum and two clades in Z. armatum. Despite no evidence of recent admixture between species, we detected substantial gene flow within species. Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene (including the Penultimate Glaciation and the Last Glacial Maximum) and recent domestication events together shaped the demography and evolution of Chinese pepper. Our analyses also suggest that southeastern Gansu province is the most likely origin of Z. bungeanum in China. These findings provide comprehensive insights into genetic diversity, population structure, demography, and adaptation in Zanthoxylum.


2015 ◽  
Vol 11 (6) ◽  
Author(s):  
Qingwen Liu ◽  
Yue Song ◽  
Lun Liu ◽  
Mingyue Zhang ◽  
Jiangmei Sun ◽  
...  

Author(s):  
Muliyar Krishna Rajesh ◽  
Sunil Shivaji Gangurde ◽  
Manish Kumar Pandey ◽  
Vittal Niral ◽  
Raju Sudha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document