scholarly journals Identification of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.


2021 ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background: Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS.Methods: Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus (GEO) database. Fifty-three rectal mucosa samples from 27 Irritable Bowel Syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers (HV) as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein-protein interaction (PPI) network was constructed and visualized using STRING database and Cytoscape. Results: The microarray analysis demonstrated a subset of genes (CCKBR, CCL13ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients.Conclusions: Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.



2021 ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background: Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS.Methods: Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus (GEO) database. Fifty-three rectal mucosa samples from 27 Irritable Bowel Syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers (HV) as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein-protein interaction (PPI) network was constructed and visualized using STRING database and Cytoscape.Results: The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients.Conclusions: Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.



2020 ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background: Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS.Methods: Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus (GEO) database. Fifty-three rectal mucosa samples from Irritable Bowel Syndrome with diarrhea (IBS-D) patients and 40 samples from healthy volunteers (HV) as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein-protein interaction (PPI) network was constructed and visualized using STRING database and Cytoscape. Results: The microarray analysis demonstrated a subset of genes (CCKBR, CCL13ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients.Conclusions: Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.



2020 ◽  
Author(s):  
Zhongyuan Lin ◽  
Yimin Wang ◽  
Shiqing Lin ◽  
Decheng Liu ◽  
Guohui Mo ◽  
...  

Abstract Background: Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS.Methods: Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus (GEO) database. Fifty-three rectal mucosa samples from Irritable Bowel Syndrome with diarrhea (IBS-D) patients and 40 samples from healthy volunteers (HV) as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein-protein interaction (PPI) network was constructed and visualized using STRING database and Cytoscape.Results: The microarray analysis demonstrated a subset of genes (CCKBR, CCL13ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients.Conclusions: Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.



2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haoran Jia ◽  
Zibo Zhang ◽  
Ehsan Sadeghnezhad ◽  
Qianqian Pang ◽  
Shangyun Li ◽  
...  

Abstract Background Grape buds and leaves are directly associated with the physiology and metabolic activities of the plant, which is monitored by epigenetic modifications induced by environment and endogenous factors. Methylation is one of the epigenetic regulators that could be involved in DNA levels and affect gene expression in response to stimuli. Therefore, changes of gene expression profile in leaves and bud through inhibitors of DNA methylation provide a deep understanding of epigenetic effects in regulatory networks. Results In this study, we carried out a transcriptome analysis of ‘Kyoho’ buds and leaves under 5-azacytidine (5-azaC) exposure and screened a large number of differentially expressed genes (DEGs). GO and KEGG annotations showed that they are mainly involved in photosynthesis, flavonoid synthesis, glutathione metabolism, and other metabolic processes. Functional enrichment analysis also provided a holistic perspective on the transcriptome profile when 5-azaC bound to methyltransferase and induced demethylation. Enrichment analysis of transcription factors (TFs) also showed that the MYB, C2H2, and bHLH families are involved in the regulation of responsive genes under epigenetic changes. Furthermore, hormone-related genes have also undergone significant changes, especially gibberellin (GA) and abscisic acid (ABA)-related genes that responded to bud germination. We also used protein-protein interaction network to determine hub proteins in response to demethylation. Conclusions These findings provide new insights into the establishment of molecular regulatory networks according to how methylation as an epigenetic modification alters transcriptome patterns in bud and leaves of grape.



2020 ◽  
Author(s):  
Moeen-ul- haq ◽  
Fazl Ullah ◽  
Muhammad Kamran Hassan ◽  
Ahmad Nawaz Babar ◽  
Anwar Ullah

Abstract Irritable bowel syndrome (IBS) is a gastrointestinal disease of intestinal mobility. IBS present with variable clinical symptoms making the treatment difficult. IBS is quiet prevalent around the globe with different frequency. Differences in frequency and gender is due to diet habit. It is less frequent where diary product and vegetable are frequently consumed as compared to those who consumed meat. Lactobacillus plantarum 299v (L. plantarum 299v) is the most widely studied strain in the IBS patients. It is resistant to the actions of intestinal acids and bile, colonizes the human colonic mucosa and is non-pathogenic in nature. The efficacy of Lactobacillus plantarum 299v L is different in different study. The present study was designed to find the efficacy of Lactobacillus plantarum 299v in comparison to placebo in randomized control trial. MethodOne hundred and ninety patients were assessed for eligibility 46 among them were excluded from the study and twenty four declined to participate in the study. One hundred and twenty patient of IBS was grouped in two different groups. The one was treated with Lactobacillus plantarum 299v and the other was treated with placebo. Symptoms of IBS, like abdominal pain, bloating and complete rectal emptying was noted and interpreted among the groups. Results There was no statistically significant difference in relieving abdominal pain, bloating, rectal emptying in Lactobacillus plantarum 299v treated group and placebo treated group. Conclusion This randomized control trail of Lactobacillus plantarum 299v fail to show signicant efficacy in IBS treatment as compared to placebo.



2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Yang Liao ◽  
Wei-Wen Wang ◽  
Zheng-Hui Yang ◽  
Jun Wang ◽  
Hang Lin ◽  
...  

To complement the molecular pathways contributing to Parkinson’s disease (PD) and identify potential biomarkers, gene expression profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package ofR. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery) indicated that the above DEGs may be involved in the following processes, such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via DAVID analysis. These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential biomarkers for this disease.



2021 ◽  
Author(s):  
Jun-wei LIANG ◽  
Wen-jun BAI ◽  
Xiao-yan WANG ◽  
Li-li CHI

Abstract Background:Many studies on long chain non-coding RNAs (lncRNAs) are published in recent years. But the roles of lncRNAs in diarrhea irritable bowel syndrome (IBS-D) are still unclear and should be further examined. The present work focused on determining the molecular mechanisms underlying lncRNAs regulation in IBS-D on the basis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network.Methods:This study collected the mRNAs (GSE36701) expression data within human tissue samples with IBS-D group and normal group based on Gene Expression Omnibus (GEO) database and collected the differentially expressed lncRNAs (DELs) and differentially expressed miRNAs (DEmiRs) based on PubMed.Functional enrichment analysis of DEGs was performed on the DAVID database. Then the interaction network was constructed and visualized using STRING database and Cytoscape.Results: This study identified 3192 DEmRNAs (1437 with up-regulation and 1755 with down-regulation),29 DEmiRs (18 upregulated and 11 downregulated)and 2 DELs(one upregulated and one downregulated) between IBS-D and control samples.Furthermore,we constructed a lncRNA-miRNA-mRNA network through two DELs (lncRNA TUG1 with up-regulation and lncRNA H19 with down-regulation), four DemiRs (hsa-miR-148a-3p,hsa-miR-342-3p,hsa-miR-149-5p with up-regulation and hsa-miR-219a-5p with down-regulation)and 24 DEGs (4 with up-regulation and 20 with down-regulation) with 42 axes. Simultaneously, we conducted functional enrichment and pathway analyses on genes within the as-constructed ceRNA network. According to our PPI/ceRNA network and functional enrichment analysis results, two critical genes were found (BCL2L11 and QKI). Conclusion:In conclusion, the ceRNA interaction axis we identified is a potentially critical target for treating IBS-D.BCL2L11 axis(LncH19-hsa-miR-148a-3p-BCL2L11) may via interaction with PI3K/AKT pathways in IBS-D.Our results shed more lights on the possible pathogenic mechanism in IBS-D using a lncRNA-associated ceRNA network.



2021 ◽  
Author(s):  
Jiaying Shi ◽  
Shule Wang ◽  
Jingfei Zhang ◽  
Xueli Chang ◽  
Juan Wang ◽  
...  

Abstract Background: Immune-mediated necrotizing myopathy (IMNM) is a type of autoimmune myopathy with limited therapeutic measures. This study aims to elucidate the potential biomarkers and investigate the underlying mechanisms in IMNM. Materials and Methods: Microarray datasets in GSE128470 and GSE39454 were obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were filtrated by limma package in R statistical software. Functional enrichment analyses were performed using DAVID online tools. STRING database was used to construct protein‑protein interaction (PPI) networks. The module analysis and hub genes validation were performed using Cytoscape software. Results: Integrated analysis of two databases revealed 160 co-expressed DEGs in IMNM, including 80 downregulated genes and 80 upregulated genes. GO enrichment analysis revealed that sarcomere is the most significantly enriched GO term within the DEGs. KEGG pathway enrichment analysis revealed significant enrichment pathways in cancer. A PPI network consisting of 115 nodes and 205 edges were constructed and top 20 hub genes were identified. Two key modules from the network were identified. Eight hub genes in module 1 (MYH3, MYH7B, MYH8, MYL5, MYBPH, ACTC1, YNNT 2 and MYOG) are tightly associated with skeletal muscle construction. Seven hub genes in module 2 (C1QA, TYROBP, MS4A6A, RNASE6, FCGR2A, FCER1G and LAPTM5) mainly take part in immune response. Conclusions: Our research indicated that cancer-related pathways, skeletal muscle construction pathways and immune-mediated pathways might participate in the development of IMNM. Identified hub genes may serve as potential biomarkers or targets for early diagnosis.



2021 ◽  
Author(s):  
Mingyi Yang ◽  
Yani Su ◽  
Yao Ma ◽  
Yirixiati Aihaiti ◽  
Peng Xu

Abstract Objective: To study the potential biomarkers and related pathways in osteoarthritis (OA) synovial lesions, and to provide theoretical basis and research directions for the pathogenesis and treatment of OA. Methods: Download the microarray data sets GSE12021 and GSE82107 from Gene Expression Omnibus. GEO2R recognizes differentially expressed genes. Perform functional enrichment analysis of differentially expressed genes and construct protein-protein interaction network. Cytoscape performs module analysis and enrichment analysis of top-level modules. Further identify the Hub gene and perform functional enrichment analysis. TargetScan, miRDB and miRWalk three databases predict the target miRNAs of Hub gene and identify key miRNAs. Results: Finally, 10 Hub genes and 17 key miRNAs related to the progression of OA synovitis were identified. NF1, BTRC and MAPK14 may play a vital role in OA synovial disease. Conclusion: The Hub genes and key miRNAs discovered in this study may be potential biomarkers in the development of OA synovitis, and provide research methods and target basis for the pathogenesis and treatment of OA.



Sign in / Sign up

Export Citation Format

Share Document