scholarly journals Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kan He ◽  
Xiaoming Liu ◽  
Mingyang Li ◽  
Xueyan Li ◽  
Hualin Yang ◽  
...  
2020 ◽  
Author(s):  
kan He ◽  
Xiaoming Liu ◽  
Mingyang Li ◽  
Xueyan Li ◽  
Hualin Yang ◽  
...  

Abstract ABSTRACT Background: The detection of Kirsten rat sarcoma viral oncogene homolog ( KRAS )gene mutations in colorectal cancer (CRC) is key to the optimal design of individualized therapeutic strategies. The noninvasive prediction of the KRAS status in CRC is challenging. Deep learning (DL) in medical imaging has shown its high performance in diagnosis, classification, and prediction in recent years. In this paper, we investigated predictive performance by using a DL method with a residual neural network ( ResNet ) to estimate the KRAS mutation status in CRC patients based on pre-treatment contrast-enhanced CT imaging. Methods: We have collected a dataset consisting of 157 patients with pathology-confirmed CRC who were divided into a training cohort (n = 117) and a testing cohort (n = 40). We developed an ResNet model that used portal venous phase CT images to estimate KRAS mutations in the axial, coronal, and sagittal directions of the training cohort and evaluated the model in the testing cohort. Several groups of expended region of interest (ROI)patches were generated for the ResNet model,to explore whether tissues around the tumor can contribute to cancer assessment. We also explored a radiomics model with the random forest classifier (RFC) to predict KRAS mutations and compared it with the DL model. Results: The ResNet model in the axial direction achieved the higher area under the curve (AUC) value (0.90) in the testing cohort and peaked at 0.93 with an input of “ROI and 20-pixel” surrounding area. AUC of radiomics model in testing cohorts were 0.818. In comparison, the ResNet model showed better predictive ability . Conclusions: Our experiments reveal that the computerized assessment of the pre-treatment CT images of CRC patients using a DL model has the potential to precisely predict KRAS mutations. This new model has the potential to assist in noninvasive KRAS mutation estimation. Keywords: Colorectal Neoplasm, Mutation, Deep Learning


2020 ◽  
Author(s):  
kan He ◽  
Xiaoming Liu ◽  
Mingyang Li ◽  
Xueyan Li ◽  
Hualin Yang ◽  
...  

Abstract Background: The detection of KRAS gene mutations in colorectal cancer (CRC) is key to the optimal design of individualized therapeutic strategies. The noninvasive prediction of the KRAS status in CRC is challenging. Deep learning (DL) in medical imaging has shown its high performance in diagnosis, classification, and prediction in recent years. In this paper, we investigated predictive performance by using a DL method with a residual neural network ( ResNet ) to estimate the KRAS mutation status in CRC patients based on routine pre-treatment contrast-enhanced CT imaging. Methods: We have collected a dataset consisting of 157 patients with pathology-confirmed CRC who were randomly divided into a training cohort (n = 117) and a validation cohort (n = 40). We developed an ResNet model that used portal venous phase CT images to estimate KRAS mutations in the axial, coronal, and sagittal directions of the training cohort and validated the model in the validation cohort. Several groups of expended ROI patches were generated for the ResNet model, to explore whether tissues around the tumor can contribute to cancer assessment. We also explored a radiomics model with the random forest classifier (RFC) to predict KRAS mutations and compared it with the DL model. Results: The ResNet model in the axial direction achieved the higher area under the curve (AUC) value (0.90) in the validation cohort and peaked at 0.93 with an input of “ROI and 20-pixel” surrounding area. In the training cohort, the AUC was 0.945 (sensitivity: 0.75; specificity: 0.94), and in the validation cohort, the AUC was0.818 (sensitivity: 0.70; specificity: 0.85). In comparison, the ResNet model showed better predictive ability . Conclusions: Our experiments reveal that the computerized assessment of the pre-treatment CT images of CRC patients using a DL model has the potential to precisely predict KRAS mutations. This new model has the potential to assist in noninvasive KRAS mutation estimation. Keywords: Colorectal Neoplasm, Mutation, Deep Learning


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.


2020 ◽  
Author(s):  
Gang Yu ◽  
Ting Xie ◽  
Chao Xu ◽  
Xing-Hua Shi ◽  
Chong Wu ◽  
...  

AbstractPurposesThe machine-assisted recognition of colorectal cancer using pathological images has been mainly focused on supervised learning approaches that suffer from a significant bottleneck of requiring a large number of labeled training images. The process of generating high quality image labels is time-consuming, labor-intensive, and thus lags behind the quick accumulation of pathological images. We hypothesize that semi-supervised deep learning, a method that leverages a small number of labeled images together with a large quantity of unlabeled images, can provide a powerful alternative strategy for colorectal cancer recognition.MethodWe proposed semi-supervised classifiers based on deep learning that provide pathological predictions at both patch-level and the level of whole slide image (WSI). First, we developed a semi-supervised deep learning framework based on the mean teacher method, to predict the cancer probability of an individual patch by utilizing patch-level data generated by dividing a WSI into many patches. Second, we developed a patient-level method utilizing a cluster-based and positive sensitivity strategy on WSIs to predict whether the WSI or the associated patient has cancer or not. We demonstrated the general utility of the semi-supervised learning method for colorectal cancer prediction utilizing a large data set (13,111 WSIs from 8,803 subjects) gathered from 13 centers across China, the United States and Germany. On this data set, we compared the performances of our proposed semi-supervised learning method with those from the prevailing supervised learning methods and six professional pathologists.ResultsOur results confirmed that semi-supervised learning model overperformed supervised learning models when a small portion of massive data was labeled, and performed as well as a supervised learning model when using massive labeled data. Specifically, when a small amount of training patches (~3,150) was labeled, the proposed semi-supervised learning model plus ~40,950 unlabeled patches performed better than the supervised learning model (AUC: 0.90 ± 0.06 vs. 0.84 ± 0.07,P value = 0.02). When more labeled training patches (~6,300) were available, the semi-supervised learning model plus ~37,800 unlabeled patches still performed significantly better than a supervised learning model (AUC: 0.98 ± 0.01vs. 0.92 ± 0.04, P value = 0.0004), and its performance had no significant difference compared with a supervised learning model trained on massive labeled patches (~44,100) (AUC: 0.98 ± 0.01 vs. 0.987 ± 0.01, P value = 0.134). Through extensive patient-level testing of 12,183 WSIs in 12 centers, we found no significant difference on patient-level diagnoses between the semi-supervised learning model (~6,300 labeled, ~37,800 unlabeled training patches) and a supervised learning model (~44,100 labeled training patches) (average AUC: 97.40% vs. 97.96%, P value = 0.117). Moreover, the diagnosis accuracy of the semi-supervised learning model was close to that of human pathologists (average AUC: 97.17% vs. 96.91%).ConclusionsWe reported that semi-supervised learning can achieve excellent performance at patch-level and patient-level diagnoses for colorectal cancer through a multi-center study. This finding is particularly useful since massive labeled data are usually not readily available. We demonstrated that our newly proposed semi-supervised learning method can accurately predict colorectal cancer that matched the average accuracy of pathologists. We thus suggested that semi-supervised learning has great potentials to build artificial intelligence (AI) platforms for medical sciences and clinical practices including pathological diagnosis. These new platforms will dramatically reduce the cost and the number of labeled data required for training, which in turn will allow for broader adoptions of AI-empowered systems for cancer image analyses.


Author(s):  
Yinsheng Li ◽  
Juan Pablo Cruz Bastida ◽  
Ke Li ◽  
Daniel Bushe ◽  
Christopher Francois ◽  
...  

2019 ◽  
Vol 65 (5) ◽  
pp. 701-707
Author(s):  
Vitaliy Shubin ◽  
Yuriy Shelygin ◽  
Sergey Achkasov ◽  
Yevgeniy Rybakov ◽  
Aleksey Ponomarenko ◽  
...  

To determine mutations in the plasma KRAS gene in patients with colorectal cancer was the aim of this study. The material was obtained from 44 patients with colorectal cancer of different stages (T1-4N0-2bM0-1c). Plasma for the presence of KRAS gene mutation in circulating tumor DNA was investigated using digital droplet polymerase chain reaction (PCR). KRAS mutations in circulating tumor DNA isolated from 1 ml of plasma were detected in 13 (30%) patients with cancer of different stages. Of these, with stage II, there were 3 patients, with III - 5 and with IV - 5. Patients who did not have mutations in 1 ml of plasma were analyzed for mutations of KRAS in circulating tumor DNA isolated from 3 ml of plasma. Five more patients with KRAS mutations were found with II and III stages. The highest concentrations of circulating tumor DNA with KRAS mutation were found in patients with stage IV. The increase in plasma volume to 3 ml did not lead to the identification of mutations in I stage. This study showed that digital droplet PCR allows identification of circulating tumor DNA with the KRAS mutations in patients with stage II-IV of colon cancer. The results can be used to determine the degree of aggressiveness of the tumor at different stages of the disease, but not the 1st, and it is recommended to use a plasma volume of at least 3 ml.


2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Sign in / Sign up

Export Citation Format

Share Document