scholarly journals A novel nonsense variant of the AGXT identified in a Chinese family: special variant research in the Chinese reference genome

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chang Bao Xu ◽  
Xu Dong Zhou ◽  
Hong En Xu ◽  
Yong Li Zhao ◽  
Xing Hua Zhao ◽  
...  

Abstract Background Primary hyperoxaluria(PH)is a rare autosomal recessive genetic disease that contains three subtypes (PH1, PH2 and PH3). Approximately 80% of PH patients has been reported as subtype PH1, this subtype of PH has been related to a higher risk of renal failure at any age. Several genetic studies indicate that the variants in gene AGXT are responsible for the occurrence of PH1. However, the population heterogeneity of the variants in AGXT makes the genetic diagnosis of PH1 more challenging as it is hard to locate each specific variant. It is valuable to have a complete spectrum of AGXT variants from different population for early diagnosis and clinical treatments of PH1. Case presentation In this study, We performed high-throughput sequencing and genetic analysis of a 6-year-old male PH1 patient from a Chinese family. Two variants (c.346G > A: p.Gly116Arg; c.864G > A: p.Trp288X) of the gene AGXT were identified. We found a nonsense variant (c.864G > A: p.Trp288X) that comes from the proband’s mother and has never been reported previously. The other missense variant (c.346G > A: p.Gly116Arg) was inherited from his father and has been found previously in a domain of aminotransferase, which plays an important role in the function of AGT protein. Furthermore, we searched 110 pathogenic variants of AGXT that have been reported worldwide in healthy local Chinese population, none of these pathogenic variants was detected in the local genomes. Conclusions Our research provides an important diagnosis basis for PH1 on the genetic level by updating the genotype of PH1 and also develops a better understanding of the variants in AGXT by broadening the variation database of AGXT according to the Chinese reference genome.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-Xia Tang ◽  
Xiang-Shui Xiao ◽  
Kai Wang ◽  
Jie-Yuan Jin ◽  
Liang-Liang Fan ◽  
...  

Background. Cleft lip with or without cleft palate (CL/P) is the most common facial birth defect, with a worldwide incidence of 1 in 700-1000 live births. CL/P can be divided into syndromic CL/P (SCL/P) and nonsyndromic CL/P (NSCL/P). Genetic factors are an important component to the etiology of NSCL/P. ARHGAP29, one of the NSCL/P disease-causing genes, mediates the cyclical regulation of small GTP binding proteins such as RhoA and plays an essential role in cellular shape, proliferation, and craniofacial development. Methods. The present study investigated a Chinese family with NSCL/P and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatic analysis and prediction of variant pathogenicity. Cosegregation was subsequently conducted. Results. We identified a novel heterozygous missense variant of ARHGAP29 (c.2615C > T, p.A872V) in a Chinese pedigree with NSCL/P. Conclusion. We detected the disease-causing variant in this NSCL/P family. Our identification expands the genetic spectrum of ARHGAP29 and contributes to novel approaches to the genetic diagnosis and counseling of CL/P families.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lulu Yan ◽  
Ru Shen ◽  
Zongfu Cao ◽  
Chunxiao Han ◽  
Yuxin Zhang ◽  
...  

PPP2R5D-related neurodevelopmental disorder, which is mainly caused by de novo missense variants in the PPP2R5D gene, is a rare autosomal dominant genetic disorder with about 100 patients and a total of thirteen pathogenic variants known to exist globally so far. Here, we present a 24-month-old Chinese boy with developmental delay and other common clinical characteristics of PPP2R5D-related neurodevelopmental disorder including hypotonia, macrocephaly, intellectual disability, speech impairment, and behavioral abnormality. Trio-whole exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variant. The pathogenicity of the variant was evaluated using bioinformatics tools. We identified a novel pathogenic variant in the PPP2R5D gene (c.620G>T, p.Trp207Leu). The variant is located in the variant hotspot region of this gene and is predicted to cause PPP2R5D protein dysfunction due to an increase in local hydrophobicity and unstable three-dimensional structure. We report a novel pathogenic variant of PPP2R5D associated with PPP2R5D-related neurodevelopmental disorder from a Chinese family. Our findings expanded the phenotypic and mutational spectrum of PPP2R5D-related neurodevelopmental disorder.


2020 ◽  
Vol 33 (7) ◽  
pp. 670-675
Author(s):  
Peng Fan ◽  
Xiao-Cheng Pan ◽  
Di Zhang ◽  
Kun-Qi Yang ◽  
Ying Zhang ◽  
...  

Abstract BACKGROUND Liddle syndrome (LS), an autosomal dominant disorder, is a common monogenic hypertension in pediatrics. In this study, we reported a novel SCNN1G variant in a Chinese family with pediatric LS, and conduct a systematic review of epithelial sodium channel (ENaC)-gene-positive LS cases to conclude the clinical genetic features of LS in childhood. METHODS Next-generation sequencing and in silico analysis were performed in the proband to discover candidate variants. Sanger sequencing was used to identify the predicted likely pathogenic variant. LS patients in this family were treated with amiloride. The Medline database was searched to summarize clinical features of pediatric LS cases whose age at genetic diagnosis was not more than 18 years. RESULTS Genetic analysis identified a novel SCNN1G missense variant (c.1874C>T, p.Pro625Leu) in the proband with LS in childhood. In silico analysis revealed this heterozygous variant was highly conserved and deleterious. A total of 38 publications described pediatric LS associated with 25 pathogenic variants in SCNN1B and SCNN1G in 54 children. Despite the phenotypic heterogeneity, early-onset hypertension is the most common feature. All LS patients in this family or the reviewed cases showed significantly improvements in hypertension and hypokalemia after treatment with ENaC inhibitors. CONCLUSIONS This study identified a novel SCNN1G missense variant in a patient with pediatric LS, expanding the genetic spectrum of SCNN1G and demonstrating the PY motif of γ-ENaC as a potential mutant region. Early identification and specific management of LS in children and adolescents are important to prevent the development of hypertensive end-organ disease.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shunzhi He ◽  
Na Lv ◽  
Hongchu Bao ◽  
Xiong Wang ◽  
Jing Li

Abstract Background Tuberous sclerosis complex (TSC) is an autosomal-dominant hereditary disease characterized by hamartomas of multiple organ systems, including the brain, skin, heart, kidney and lung. Genetically, TSC is caused by pathogenic variants in the TSC1 or TSC2 gene. Case presentation We reported a sporadic case of a 32-year-old Han Chinese male diagnosed with TSC, whose spouse had a history of two spontaneous miscarriages and an induced abortion of a 30-week fetus identified with cardiac rhabdomyoma by ultrasound. A novel heterozygous missense variant in the TSC2 gene (Exon35:c.4511 T > C:p.L1504P) was identified in the male patient and the aborted fetus by next-generation sequencing, but not in his wife or both his parents. According to the ACMG/AMP criteria, this variant was classified as a “likely pathogenic” variant. Conclusion The novel TSC2:c.4511 T > C variant identified was highly likely associated with TSC and could potentially lead to adverse reproductive outcomes. IVF-ET and pre-implantation genetic diagnosis for TSC are recommended for this patient in the future to prevent fetal TSC.


2021 ◽  
Vol 14 (1) ◽  
pp. e235287
Author(s):  
Rikke Maria Nielsen ◽  
Stine Bjørn Gram ◽  
Anette Bygum

Pityriasis rubra pilaris (PRP) is a rare dermatosis characterised by hyperkeratotic follicular papules, orange-red scaly plaques and palmoplantar keratoderma. The aetiology of the disease is in most cases unclear and treatment can be challenging. Familial cases of PRP may result from pathogenic variants in the caspase recruitment domain family member 14 (CARD14). We present a case of lifelong PRP in a 70-year-old woman, where genetic testing revealed a heterozygote missense variant c.412G>A, p.(Glu138Lys) in CARD14. Therapy with ustekinumab was initiated with remarkable effect, which improved the patient’s quality of life significantly.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Somayyeh Hashemian ◽  
Reza Jafarzadeh Esfehani ◽  
Siroos Karimdadi ◽  
Nosrat Ghaemi ◽  
Peyman Eshraghi ◽  
...  

Background. Congenital hyperinsulinism (CHI) is a heterogeneous disease with various underlying genetic causes. Among different genes considered effective in the development of CHI, ABCC8, KCNJ11, and HADH genes are among the important genes, especially in a population with a considerable rate of consanguineous marriage. Mutational analysis of these genes guides clinicians to better treatment and prediction of prognosis for this rare disease. The present study aimed to evaluate genetic variants in ABCC8, KCNJ11, and HADH genes as causative genes for CHI in the Iranian population. Methods. The present case series took place in Mashhad, Iran, within 11 years. Every child who had a clinical phenotype and confirmatory biochemical tests of CHI enrolled in this study. Variants in ABCC8, KCNJ11, and HADH genes were analyzed by the polymerase chain reaction and sequencing in our patients. Results. Among 20 pediatric patients, 16 of them had variants in ABCC8, KCNJ11, and HADH genes. The mean age of genetic diagnosis was 18.6 days. A homozygous missense (c.2041-21G > A) mutation in the ABCC8 gene was seen in three infants. Other common variants were frameshift variants (c.3438dup) in the ABCC8 gene and a missense variant (c.287-288delinsTG) in the KCNJ11 gene. Most of the variants in our population were still categorized as variants of unknown significance and only 7 pathogenic variants were present. Conclusion. Most variants were located in the ABCC8 gene in our population. Because most of the variants in our population are not previously reported, performing further functional studies is warranted.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 277
Author(s):  
Daniela Iancu ◽  
Emma Ashton

Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1269
Author(s):  
Fei Song ◽  
Marta Owczarek-Lipska ◽  
Tim Ahmels ◽  
Marius Book ◽  
Sabine Aisenbrey ◽  
...  

Retinal dystrophies (RD) are clinically and genetically heterogenous disorders showing mutations in over 270 disease-associated genes. Several millions of people worldwide are affected with different types of RD. Studying the relevance of disease-associated sequence alterations will assist in understanding disorders and may lead to the development of therapeutic approaches. Here, we established a whole exome sequencing (WES) pipeline to rapidly identify disease-associated mutations in patients. Sanger sequencing was applied to identify deep-intronic variants and to verify the co-segregation of WES results within families. We analyzed 26 unrelated patients with different syndromic and non-syndromic clinical manifestations of RD. All patients underwent ophthalmic examinations. We identified nine novel disease-associated sequence variants among 37 variants identified in total. The sequence variants located to 17 different genes. Interestingly, two cases presenting with Stargardt disease carried deep-intronic variants in ABCA4. We have classified 21 variants as pathogenic variants, 4 as benign/likely benign variants, and 12 as variants of uncertain significance. This study highlights the importance of WES-based mutation analyses in RD patients supporting clinical decisions, broadly based genetic diagnosis and support genetic counselling. It is essential for any genetic therapy to expand the mutation spectrum, understand the genes’ function, and correlate phenotypes with genotypes.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Maude Grelet ◽  
Véronique Blanck ◽  
Sabine Sigaudy ◽  
Nicole Philip ◽  
Fabienne Giuliano ◽  
...  

Abstract Background Segmental progeroid syndromes are a heterogeneous group of rare and often severe genetic disorders that have been studied since the twentieth century. These progeroid syndromes are defined as segmental because only some of the features observed during natural aging are accelerated. Methods Since 2015, the Molecular Genetics Laboratory in Marseille La Timone Hospital proposes molecular diagnosis of premature aging syndromes including laminopathies and related disorders upon NGS sequencing of a panel of 82 genes involved in these syndromes. We analyzed the results obtained in 4 years on 66 patients issued from France and abroad. Results Globally, pathogenic or likely pathogenic variants (ACMG class 5 or 4) were identified in about 1/4 of the cases; among these, 9 pathogenic variants were novel. On the other hand, the diagnostic yield of our panel was over 60% when the patients were addressed upon a nosologically specific clinical suspicion, excepted for connective tissue disorders, for which clinical diagnosis may be more challenging. Prenatal testing was proposed to 3 families. We additionally detected 16 variants of uncertain significance and reclassified 3 of them as benign upon segregation analysis in first degree relatives. Conclusions High throughput sequencing using the Laminopathies/ Premature Aging disorders panel allowed molecular diagnosis of rare disorders associated with premature aging features and genetic counseling for families, representing an interesting first-level analysis before whole genome sequencing may be proposed, as a future second step, by the National high throughput sequencing platforms (“Medicine France Genomics 2025” Plan), in families without molecular diagnosis.


2019 ◽  
Author(s):  
Qi Yang ◽  
Jin Wang ◽  
Xiaoxian Tian ◽  
Fei Chen ◽  
Jing Lan ◽  
...  

Abstract Brachydactyly type A1(BDA-1) is an autosomal dominant disorder which is caused by heterozygous pathogenic variants in a specific region of the N-terminal active fragment of Indian Hedgehog ( IHH ). The disorder is mainly characterized by shortening or missing of the middle phalanges. The following study revealed a novel heterozygous missense variant c.299A>G (p.D100G) at the mutational hotspot of IHH gene after performing whole-exome sequencing in the proband of a Chinese family with BDA-1. The variant co-segregated with BDA-1 in the pedigree, showed 100% penetrance for phalange phenotype with variable expressivity. This finding expanded the variants on IHH gene which contribute to the cause of BDA-1.


Sign in / Sign up

Export Citation Format

Share Document