scholarly journals A novel ferroptosis-related 12-gene signature predicts clinical prognosis and reveals immune relevancy in clear cell renal cell carcinoma

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yingkai Hong ◽  
Mingen Lin ◽  
Dehua Ou ◽  
Zhuangkai Huang ◽  
Peilin Shen

Abstract Background Clear cell renal cell carcinoma (ccRCC) is still highly aggressive and lethal even with various therapeutic approaches. As the kidney is an iron metabolism-related organ, exploring and assessing the clinical value of ferroptosis, an iron-dependent regulated cell death, is practical and important. Methods Prognostic ferroptosis-related differentially expressed genes (DEGs) were identified from the KIRC cohort in the cancer genome atlas (TCGA) database, from which a prognostic signature was established using Lasso-penalized Cox regression analysis. Each patient in the KIRC cohort and the E-MTAB-1980 cohort (from the ArrayExpress database) was assigned a calculated signature-correlated risk score and categorized to be either in the high- or low-risk group divided by the median risk score in the KIRC cohort. Then, the independent prognostic value of the signature was further assessed by Kaplan-Meier (K-M) survival, time-dependent receiver operating characteristic (ROC) and Cox regression analyses based on overall survival (OS) in both cohorts. Finally, risk-related DEGs were identified in both cohorts and subjected to enrichment analyses for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and immune infiltration. Results Among 60 ferroptosis-related genes, 32 prognostic DEGs were identified, from which we constructed a prognostic 12-gene signature with CARS1, HMGCR, CHAC1, GOT1, CD44, STEAP3, AKR1C1, CBS, DPP4, FANCD2, SLC1A5 and NCOA4. Patients in both cohorts were divided into high- and low-risk groups, which were visually distributed in two sets and had positive-risk-related mortality. The K-M survival and the ROC curves validated that the signature has prognostic value with P < 0.05 and area under the curve > 0.7 in both cohorts, respectively. Multivariate Cox regression further confirmed the risk score as an independent prognostic predictor for OS. Commonly enriched terms in GO and KEGG not only showed a high iron correlation but also, interestingly, immune relevance of 3 immune cells (macrophages, mast cells and regulatory T cells) and 1 immune-related function (antigen processing cell co-stimulation). Conclusion We established a novel 12 ferroptosis-related-gene signature that was proven to be an independent prognostic predictor for OS and inferred to be related to tumour immunity in ccRCC; however, the underlying mechanism is still poorly characterized and needs further exploration.

2021 ◽  
Author(s):  
Yingkai Hong ◽  
Mingen Lin ◽  
Dehua Ou ◽  
Zhuangkai Huang ◽  
Peilin Shen

Abstract Background Clear cell renal cell carcinoma (ccRCC) is still highly aggressive and lethal even with various therapeutic approaches. As kidney is an iron-metabolism-related organ, exploring and assessing the clinical value of ferroptosis, an iron-dependent regulated cell death, is practical and significant. Methods Prognostic ferroptosis-related differentially expressed genes (DEGs) were identified from KIRC cohort in TCGA database, from which a prognostic signature was established using the Lasso-penalized Cox regression analysis. Each patient in the KIRC cohort and the E-MTAB-1980 cohort (from the ArrayExpress database) was assigned with a calculated signature-correlated risk score and categorized to be either in high- or low-risk group divided by the median risk score in the KIRC cohort. Then, the independent prognostic value of the signature was further assessed by Kaplan-Meier (K-M) survival, time-dependent receiver operating characteristic (ROC) and Cox regression analyses base on overall survival (OS) in both cohorts. Lastly, risk-related DEGs were identified in both cohorts and applied with the enrichment analyses for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and immune infiltration. Results Within 60 ferroptosis-related genes, 32 prognostic DEGs were identified, from which we constructed a prognostic 12-gene signature including CARS1, HMGCR, CHAC1, GOT1, CD44, STEAP3, AKR1C1, CBS, DPP4, FANCD2, SLC1A5 and NCOA4. Patients in both cohorts were divided into high- and low-risk group which were visually distributed in two sets and with positive-risk-related mortality. The K-M survival and the ROC curves validated the signature as prognostic valuable with P <0.05 and area under the curve >0.7 in both cohorts, respectively. Multivariate Cox regression further confirmed the risk score as an independent prognostic predictor for OS. Commonly enriched term in GO and KEGG not only shown a highly iron correlation, but also, interesting, an immunity relevancy of 3 immune cells (macrophages, mast cells and regulatory T cell) and 1 immune-related function (antigen processing cell co-stimulation). Conclusion We established a novel 12 ferroptosis-related-gene signature which was proved as an independent prognostic predictor for OS and inferred as relating to tumor immunity in ccRCC, however, the underlying mechanism is still poorly characterized and needed further exploration.


2020 ◽  
Author(s):  
Yun Peng ◽  
Shangrong Wu ◽  
Zihan Xu ◽  
Dingkun Hou ◽  
Nan Li ◽  
...  

Abstract Backgroud Clear-cell renal cell carcinoma (ccRCC) is stubborn to traditional chemotherapy and radiation treatment, which makes its clinical management a major challenge. Recently, we have made efforts to understand the etiology of ccRCC. Increasing evidence revealed that the competing endogenous RNA (ceRNA) were involved in the development of various tumor. However, it’s scant for studying on ccRCC, and a comprehensive analysis of prognostic model based on lncRNA-miRNA-mRNA ceRNA regulatory network of ccRCC with large-scale sample size and RNA‐sequencing expression data is still limited. Methods RNA‐sequencing expression data were taken out from GTEx database and TCGA database, A total of 354 samples with ccRCC and 157 normal controlled samples were included in our study. The ccRCC-specific genes were obtained from WGCNA and differential expression analysis. Following, the communication between mRNAs and lncRNAs and target miRNAs were predicted by MiRcode, starBase, miRTarBase, and TargetScan. A gene signature of eight genes was constructed by univariate Cox regression, lasso methods and multivariate Cox regression analysis. Results A total of 2191 mRNAs and 1377 lncRNAs was identified, and a dys-regulated ceRNA network for ccRCC was established using 7 mRNAs, 363 lncRNAs, and 3 miRNAs. Further, a gene signature in cluding 8 genes based on this ceRNA was constructed, meanwhile, a nomogram predicting 1-, 3-, 5-year survival probability containing both clinical characteristics and ccRCC-specific gene signatures was developed. Conclusion It could contribute to a better understanding of ccRCC tumorigenesis mechanism and guide clinicians to make a more accurate treatment decision.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Maolin Hu ◽  
Jiangling Xie ◽  
Huiming Hou ◽  
Ming Liu ◽  
Jianye Wang

Background. Few previous studies have comprehensively explored the level of DNA methylation and gene expression in ccRCC. The purpose of this study was to identify the key clear cell renal cell carcinoma- (ccRCC-) related DNA methylation-driven genes (MDG) and to build a prognostic model based on the level of DNA methylation. Methods. RNA-seq transcriptome data and DNA methylation data were obtained from The Cancer Genome Atlas. Based on the MethylMix algorithm, we obtain ccRCC-related MDG. The univariate and multivariate Cox regression analyses were employed to investigate the correlation between patient overall survival and the methylation level of each MDG. Finally, a prognosis risk score was established based on a linear combination of the regression coefficient derived from the multivariate Cox regression model (β) multiplied with the methylation level of the gene. Results. 19 ccRCC-related MDG were identified. Three MDG (NCKAP1L, EVI2A, and BATF) were further screened and integrated into a prognostic risk score model, risk score=3.710∗methylation level of NCKAP1L+−3.892∗methylation level of EVI2A+−3.907∗methylation level of BATF. The risk model was independent from conventional clinical characteristics as a prognostic factor for ccRCC (HR=1.221, 95% confidence interval: 1.063–1.402, and P=0.005). The joint survival analysis showed that the gene expression and methylation levels of the prognostic genes EVI2A and BATF were significantly related with prognosis. Conclusion. This study provided an important bioinformatics foundation for in-depth studies of ccRCC DNA methylation.


2022 ◽  
Author(s):  
Hongzhe Shi ◽  
Chuanzhen Cao ◽  
Li Wen ◽  
Lianyu Zhang ◽  
Jin Zhang ◽  
...  

Abstract Background: Several models and markers were developed and found to predict outcome of advanced renal cell carcinoma. This study aimed to evaluate the prognostic value of the ratio of maximum to minimum tumor diameter (ROD) in metastatic clear cell renal cell carcinoma (mccRCC).Methods: Patients with mccRCC (n=213) treated with sunitinib from January 2008 to December 2018 were identified. Cut-off value for ROD was determined using receiver operating characteristic. Patients with different ROD scores were grouped and evaluated. Survival outcomes were estimated by Kaplan-Meier method.Results: The optimal ROD cutoff value of 1.34 was determined for progression free survival (PFS) and overall survival (OS). Patients in ROD≥1.34 group had shorter PFS (9.6 versus 17.7 months, p<0.001) and OS (25.5 versus 32.6 months, p<0.001) than patients in ROD<1.34 group. After adjustment for other factors, multivariate analysis showed ROD≥1.34 was an independent prognostic factor for PFS (p<0.001) and OS (p=0.006). Patients in ROD³1.34 group presented higher proportions of T3/4 stage (92.9% versus 7.1%, p=0.012), WHO/ISUP grade III/IV (72.0% versus 28.0%, p=0.010), tumor necrosis (71.0% versus 29.0%, p=0.039), sarcomatoid differentiation (79.1% versus 20.9%, p=0.007), poor MSKCC risk score (78.4% versus 21.6%, p<0.001) and poor IMDC risk score (74.4% versus 25.6%, p<0.001) than ROD<1.34 group.Conclusion: Primary tumor with higher ROD was an independently prognostic factor for both PFS and OS in patients with mccRCC who received targeted therapy. Higher ROD was also associated with high T stage, high WHO/ISUP grade, sarcomatoid features, tumor necrosis, poor MSKCC and IMDC risk score.


2021 ◽  
Author(s):  
Li Canxuan ◽  
Long Dan

Aims: To investigate the prognostic values and potential mechanisms of ferroptosis-related genes in clear cell renal cell carcinoma. Methods: Univariate Cox, least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were employed to identify prognosis-related hub ferroptosis-related genes and establish a prognostic model. Results: The authors established a novel clinical predictive model based on seven hub ferroptosis-related genes in The Cancer Genome Atlas training cohort (n = 374) that was verified in the testing cohort (n = 156) and the entire group (n = 530). Functional analysis indicated that several carcinogenic pathways were enriched. Tumor-infiltrating cells and immunosuppressive molecules were significantly different between the two risk groups. Conclusion: Collectively, the authors successfully constructed a novel ferroptosis-related risk signature that was significantly associated with the prognosis of clear cell renal cell carcinoma.


2020 ◽  
Author(s):  
Zheng Wang ◽  
Yanlong Zhang ◽  
Shuaishuai Fan ◽  
Yuan Ji ◽  
Jianchao Ren ◽  
...  

Abstract Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. This study aimed to establish a nomogram to predict ccRCC prognosis.Methods: By integrating DNA methylation (DNAm) data and gene expression profiles of ccRCC obtained from The Cancer Genome Atlas (TCGA), DNAm-driven genes were identified by differential and correlation analyses. Next, risk genes were selected by multiple algorithms (univariate Cox and Kaplan-Meier survival analyses) and various databases (TCGA, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and The Human Protein Atlas (HPA)). A risk score model was established by multivariate Cox analyses. ConsensusPathDB and Gene Set Enrichment Analysis (GSEA) were used to identify the biological functions of the selected genes. After comprehensively evaluating the clinical data, we established and assessed a dynamic nomogram available on a webserver.Results: In total, 220 differentially expressed DNAm-driven genes were identified, and five-gene signature (EPB41L4B, HHLA2, IFI16, CMTM3, and XAF1) was related to overall survival (OS). Next, we integrated the DNAm-driven genes into the prognostic risk score model and found that age, histologic grade, pathological stage, and risk level were correlated with OS in ccRCC patients. Based on these variables, a dynamic nomogram was established to predict the ccRCC prognosis. Finally, Functional enrichment analysis showed that the functions of these genes were relevant to immune reactions.Conclusions: We identified a 5 DNAm-driven gene signature whose altered status was highly correlated with ccRCC patient OS. We constructed a dynamic nomogram to provide individualized survival predictions for ccRCC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yundong Xuan ◽  
Weihao Chen ◽  
Kan Liu ◽  
Yu Gao ◽  
Shidong Zuo ◽  
...  

Background. Disorders of autophagic processes have been reported to affect the survival outcome of clear cell renal cell carcinoma (ccRCC) patients. The purpose of our study was to identify and validate the candidate prognostic long noncoding RNA signature of autophagy. Methods. Transcriptome profiles were obtained from The Cancer Genome Atlas. The autophagy gene list was obtained from the Human Autophagy Database. Based on coexpression analysis, we obtained a list of autophagy-related lncRNAs (ARlncRNAs). GO enrichment analysis and KEGG pathway analysis were conducted to explore the functional annotation of these ARlncRNAs. Univariate and multivariate Cox regression analyses were conducted to elucidate the correlation between overall survival and the expression level of each ARlncRNAs. We then established a prognostic signature that was a linear combination of the regression coefficients from the multivariate Cox regression model ( β ) multiplied by the expression levels of the respective ARlncRNAs in the training cohort. The predictive performance was tested in the validation cohort. Additionally, the independence of the risk signature was assessed, and the relationship between the risk signature and conventional clinicopathological features was explored. Results. Seven autophagy-related lncRNAs with prognostic value (SNHG3, SNHG17, MELTF-AS1, HOTAIRM1, EPB41L4A-DT, AP003352.1, and AC145423.2) were identified and integrated into a risk signature, dividing patients into low-risk and high-risk groups. The risk signature was independent of conventional clinical characteristics as a prognostic indicator of ccRCC (HR, 1.074, 95% confidence interval: 1.036-1.113, p < 0.001 ) and was valuable in the prediction of ccRCC progression. Conclusion. Our risk signature has potential prognostic value in ccRCC, and these ARlncRNAs may play a significant role in ccRCC tumor biology.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8827 ◽  
Author(s):  
Yiqiao Zhao ◽  
Zijia Tao ◽  
Xiaonan Chen

Background Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignancies worldwide, N6-methyladenosine (m6A) has been shown to play important roles in regulating gene expression and phenotypes in both health and disease. Here, our purpose is to construct a m6A-regulrator-based risk score (RS) for prediction of the prognosis of ccRCC. Methods We used clinical and expression data of m6A related genes from The Cancer Genome Atlas (TCGA) dataset and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis to develop an RS to predict survival of patients with ccRCC, and analyzed correlations between RS and other clinical indicators such as age, grade and stage. Validation of this RS was then engaged in another cohort, E-MTAB-1980 from the ArrayExpress dataset. Finally, we used quantitative real-time PCR to analyze the expression profile of genes consists of the RS. Results A three-gene RS including METTL3, METTL14 and HNRNPA2B1 which can predict overall survival (OS) of ccRCC patients from TCGA. After applying this RS into the validation cohort from Arrayexpress, we found that it successfully reproduced the result; furthermore, the results of PCR validation were in line with our analysis. Conclusion To sum up, our study has identified an RS composed of m6A related genes that may predict the prognosis of ccRCC patients, which might be helpful for future therapeutic strategies. Our results call for further experimental studies for validations.


2021 ◽  
Vol 41 (8) ◽  
Author(s):  
Wei Ma ◽  
Manli Zhong ◽  
Xiaowu Liu

Abstract Background: The present study investigated the independent prognostic value of glycolysis-related long noncoding (lnc)RNAs in clear cell renal cell carcinoma (ccRCC). Methods: A coexpression analysis of glycolysis-related mRNAs–long noncoding RNAs (lncRNAs) in ccRCC from The Cancer Genome Atlas (TCGA) was carried out. Clinical samples were randomly divided into training and validation sets. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to establish a glycolysis risk model with prognostic value for ccRCC, which was validated in the training and validation sets and in the whole cohort by Kaplan–Meier, univariate and multivariate Cox regression, and receiver operating characteristic (ROC) curve analyses. Principal component analysis (PCA) and functional annotation by gene set enrichment analysis (GSEA) were performed to evaluate the risk model. Results: We identified 297 glycolysis-associated lncRNAs in ccRCC; of these, 7 were found to have prognostic value in ccRCC patients by Kaplan–Meier, univariate and multivariate Cox regression, and ROC curve analyses. The results of the GSEA suggested a close association between the 7-lncRNA signature and glycolysis-related biological processes and pathways. Conclusion: The seven identified glycolysis-related lncRNAs constitute an lncRNA signature with prognostic value for ccRCC and provide potential therapeutic targets for the treatment of ccRCC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhengtong Lv ◽  
Lin Qi ◽  
Xiheng Hu ◽  
Miao Mo ◽  
Huichuan Jiang ◽  
...  

BackgroundAccumulating evidences indicate significant alterations in the aerobic glycolysis in clear cell renal cell carcinoma (ccRCC). We aim to develop and validate a glycolysis-related genes signature for predicting the clinical outcomes of patients with ccRCC.MethodsmRNA expression profiling of ccRCC was obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis and lasso Cox regression model were performed to identify and construct the prognostic gene signature. The protein expression levels of the core genes were obtained from the Human Protein Atlas database. We used four external independent data sets to verify the predictive power of the model for prognosis, tyrosine kinase inhibitor (TKI) therapy, and immunotherapy responses, respectively. Finally, we explored the potential mechanism of this signature through gene set enrichment analysis (GSEA).ResultsThrough the GSEA, glycolysis-related gene sets were significantly different between ccRCC tissues and normal tissues. Next, we identified and constructed a seven-mRNA signature (GALM, TGFA, RBCK1, CD44, HK3, KIF20A, and IDUA), which was significantly correlated with worse survival outcome and was an independent prognostic indicator for ccRCC patients. Furthermore, the expression levels of hub genes were validated based on the Human Protein Atlas databases. More importantly, the model can predict patients’ response to TKI therapy and immunotherapy. These findings were successfully validated in the external independent ccRCC cohorts. The mechanism exploration showed that the model may influence the prognosis by influencing tumor proliferation, base mismatch repair system and immune status of patients.ConclusionsOur study has built up a robust glycolysis-based molecular signature that predicts the prognosis and TKI therapy and immunotherapy responses of patients with ccRCC with high accuracy, which might provide important guidance for clinical assessment. Also, clinical investigations in large ccRCC cohorts are greatly needed to validate our findings.


Sign in / Sign up

Export Citation Format

Share Document