scholarly journals Extended spectrum beta-lactamase and fluoroquinolone resistance genes among Escherichia coli and Salmonella isolates from children with diarrhea, Burkina Faso

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
René Dembélé ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. Methods Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. Results The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX−M gene and the qnrB gene simultaneously. Conclusions This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.

2020 ◽  
Author(s):  
Rene DEMBELE ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso.Methods: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains.Results: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX-M gene and the qnrB gene simultaneously.Conclusions: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.


2020 ◽  
Author(s):  
Rene DEMBELE ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso. Methods Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains. Results The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX−M gene and the qnrB gene simultaneously. Conclusions This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.


2020 ◽  
Author(s):  
Rene Dembélé ◽  
Ali Konaté ◽  
Oumar Traoré ◽  
Wendpoulomdé A. D. Kaboré ◽  
Issiaka Soulama ◽  
...  

Abstract Background: The emergence and spread of multidrug-resistant gram-negative bacteria (MDR) has become a major public health concern worldwide. This resistance is caused by enzymes-mediated genes (i.e., extended spectrum beta-lactamases) that are common in certain Enterobacterioceae species. However, the distribution of these genes is poorly documented in Burkina Faso. This study aims to determine the prevalence and distribution of the resistant genes coding for broad spectrum beta-lactamases and quinolones in rural Burkina Faso.Methods: Multiplex PCR assays were carried out to detect ESBL-encoding genes, including blaOXA, blaTEM, blaCTX-M, blaSHV. The assays also assessed the presence of quinolone resistance gene namely qnrA, qnrB and qnrS in the quinolone-resistance DEC and Salmonella strains.Results: The Extended-Spectrum Beta-Lactamases (ESBL) resistance phenotype was reported in all the E. coli isolates (5/5). Cross-resistance phenotype to quinolones (CRQ) was shown by one Salmonella strain (1/9) and three E. coli (3/5). Cross-resistance phenotypes to fluoroquinolones (CRFQ) were harboured by one Salmonella (1/9) and carbapenemase phenotypes were detected in two E. coli strains (2/5). Whilst the blaOXA genes were detected in 100% (5/5) of E. coli isolates and in 33.33% (3/9) Salmonella isolates. One strain of E. coli (1/5) harbored the blaCTX-M gene and the qnrB gene simultaneously.Conclusions: This study identified β-lactam (bla) and quinolone resistance (qnr) genes in multidrug-resistant E. coli and Salmonella spp. in rural Burkina Faso. Our finding which highlighted the enterobacteriaceae strains resistance to β-lactams and quinolones are of high interest for adequate management of antimicrobial resistant genes outbreak in Burkina Faso.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Kotsoana Peter Montso ◽  
Sicelo Beauty Dlamini ◽  
Ajay Kumar ◽  
Collins Njie Ateba

Background. Extended spectrum beta-lactamases (ESBLs) producing Enterobacteriaceae cause severe infections in humans which leads to complicated diseases. There is increasing evidence that cattle contribute to the development and spread of multidrug resistant pathogens and this raises public health concern. Despite this, data on the concurrence of ESBL producing pathogens in cattle, especially in the North-West province are rare. Therefore, the aim of the present study was to isolate, identify and characterise ESBL producing E. coli and K. pneumoniae species from cattle faeces and raw beef samples. Results. A total of 151 samples comprising 55 faeces samples and 96 raw beef samples were collected and 259 nonreplicative potential isolates of Enterobacteriaceae were obtained. One hundred and ninety-six isolates were confirmed as E. coli (114; 44%) and K. pneumoniae (82; 32%) species through amplification of uspA and uidA and ntrA gene fragments, respectively. Antimicrobial susceptibility test revealed that large proportions (66.7–100%) of the isolates were resistant to Amoxicillin, Aztreonam, Ceftazidime, Cefotaxime, and Piperacillin and were multidrug resistant isolates. Cluster analysis of antibiotic inhibition zone diameter data revealed close similarities between isolates from different sources or species thus suggested a link in antibiotic exposures. The isolates showing phenotypic resistance against ESBL antimicrobial susceptibility tests were screened for the presence of ESBL gene determinants. It was observed that 53.1% of the isolates harboured ESBL gene determinants. The blaTEM, blaSHV and blaCTX-M genes were detected in E. coli isolates (85.5%, 69.6%, and 58%, respectively) while blaCTX-M and blaOXA were detected in K. pneumoniae (40% and 42.9%, respectively). All the genetically confirmed ESBL producing E. coli and K. pneumoniae isolates were subjected to Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR analysis. Fingerprinting data revealed great similarities between isolates from different areas and sources which indicates cross-contamination between cattle and beef. Conclusion. This study revealed that cattle and its associated food products, beef in particular, harbour ESBL producing pathogens. And this warrants a need to enforce hygiene measures and to develop other mitigation strategies to minimise the spread of antibiotic resistant pathogens from animals to human.


Author(s):  
Marie N. Tuo ◽  
Augustin E. Anoh ◽  
Zéphirin O. Wayoro ◽  
Baba Coulibaly ◽  
Pacome Monemo ◽  
...  

Aims: The aims of the present study were to investigate the presence of Plasmid-Mediated Quinolone Resistance (PMQR) determinants and the association of these determinants with Extended Spectrum Beta-Lactamases (ESBLs) genes in ESBL-producing Klebsiella pneumoniae isolates from Teaching Hospital of Bouaké, Côte d’Ivoire. Study Design: It is a retrospective study. Place of Study: Bacteriology-Virology Laboratory of Teaching Hospital, Bouaké, Côte d'Ivoire. Methodology: From January 2015 to December 2016, 96 ESBL-producing Klebsiella pneumoniae isolates were collected from several specimens. Antimicrobial susceptibility of isolates was tested using the standard disk-diffusion method on Mueller-Hinton and interpretation according to recommendations of the 2017 EUCAST. These isolates analyzed for the detection of ESBL (blaCTX-M, blaTEM and blaSHV) and PMQR genes (aac(6’)-Ib-cr, qnrB and qnrS) using simplex PCR. Results: Of the 96 ESBL-producing strains, 85 (88.55%) harbored at least one of the ESBL genes tested. Out of the 85 strains encoding ESBL genes, 96.47% carried blaCTX-M and 92.94% blaSHV and blaTEM genes. Eighty nine (89.6%) of the 96 ESBL producing-isolates were resistant to ciprofloxacin and 84.4% to norfloxacin. Among the 96 strains, 80 (83.33%) were found harboring at least one PMQR gene consisting of 78 (81.3%) aac(6’)-Ib-cr, 61 (63.5%) qnrB and 15 (15.6%) qnrS. Among the PMQR-positive strains, 68.4% coharbored qnrB+acc(6’)-Ib-cr genes, 10.5% qnrB+qnrS+acc(6’)-Ib-cr and 6.6% qnrS+acc(6’)-Ib-cr. The qnrB gene was always linked to aac(6’)-Ib-cr gene. Aac(6’)-Ib-cr gene showed the highest association with three ESBL genes (87.6%), followed by qnrB gene (70.6%), then qnrS (17.7%). Conclusion: The PMQR genes were highly prevalent in ESBL-producing Klebsiella pneumoniae, primarily the aac(6’)-Ib-cr gene. The high associated was observed between ESBL and PMQR genes, notably with the aac(6’)-Ib-cr gene.


2020 ◽  
Vol 14 (8) ◽  
pp. 2746-2757
Author(s):  
Souleymane Soré ◽  
Yacouba Sawadogo ◽  
Juste Isidore Bonkoungou ◽  
Sephora P. Kaboré ◽  
Saidou Béogo ◽  
...  

Extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-PE) represent a threat for failure of empirical antibiotic therapy and are associated with high mortality, morbidity and expenses. The aims of this study was to determine the prevalence of ESBL-PE and multidrug resistant enterobacteria (MDR), enterobacteria profil, investigate the associated resistance in wastewater and salads. After wastewater and salad sampling, enterobacteria was isoled on (EMB + 4μg / L cefotaxim). The stains of Enterobacteriaceae were identified by using biochemical methods and confirmed as ESBL by double-disc synergy test (amoxicillin/clavulanic acid with cefotaxime 30 μg, ceftazidime 30 μg and ceftriaxone 30 μg). Finally, the associated resistance was investigated by testing the susceptibility of the strains by the disc diffusion method. Global prevalence of ESBL-PE was 53.92% (95% CI: 48,2-59,5) (153/293), 61.11% from wastewater and 42.47% from salads. Major ESBL-E was Escherichia coli (73.44%), followed by Klebsiella pneumoniae (21.88%). Resistance to the aminoglycoside , fluroquinolonones and sulfonamides classes were dominant, observed in 53,83%, 93,86% and 98,95% of the isolates, respectively. The frequence of MDR was hight to channel1 (32,40%) and channel2 (26,26%). This study reports very worrying results. There is an urgent need to develop measures to monitor the spread of these multidrug-resistant strains.Keywords: Wastewater, ESBL-PE, Salads, Ouagadougou.


Sign in / Sign up

Export Citation Format

Share Document