scholarly journals Maturation process of regenerated tissues after single-stage simultaneous autologous particulated cartilage implantation and open wedge high tibial osteotomy for articular cartilage defects with medial osteoarthritis of bilateral knees: a case report

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yasushi Oshima ◽  
Norishige Iizawa ◽  
Shinro Takai ◽  
Tokifumi Majima

Abstract Background Open wedge high tibial osteotomy (OWHTO) is an effective treatment option for young and middle-aged active patients with medial unicompartmental knee osteoarthritis (OA). In addition, particulated cartilage implantation has been developed as a simple procedure for cartilage regeneration. Thus, to improve the OWHTO outcomes, a single-stage, simultaneous bilateral knee arthroscopic particulated cartilage implantation with OWHTO was performed. Case presentation A 60-year-old male patient presented with severe bilateral knee pain, with grade 2 varus knee OA of the Kellgren–Lawrence classification. Primary arthroscopic evaluations based on the International Cartilage Repair Society grading system showed grade 3c articular cartilage defects of 1.5 cm in diameter at the center of the bilateral medial femoral condyles. Following bilateral OWHTO, the healthy cartilage tissue was harvested from the lateral wall of the unilateral femoral intercondylar notch and minced with the cartilage processor. Then, subchondral drillings and cartilage fragment implantations into the bilateral defects were performed arthroscopically. One year postsurgery, second-look arthroscopy findings revealed that the defects were filled with cartilage-like tissues. The maturation process of the regenerated tissues was confirmed with T2 mapping magnetic resonance imaging during the 3-year follow-up period. The patient could walk without a cane, and all Knee Injury and Osteoarthritis Outcome Score parameters were improved without any correction loss in 3 years. Conclusions This is the first report to evaluate the maturation process of the implanted particulated cartilage tissue with T2 mapping magnetic resonance imaging for 3 years. The effect of chondral resurfacing procedure with OWHTO remains unclear; however, the implantation of arthroscopic particulated cartilage fragments is a single-stage and less-invasive procedure. This treatment could regenerate cartilage-like tissue in the present case. Therefore, this additional procedure could potentially improve the long-term outcomes of OWHTO.

2019 ◽  
Vol 47 (10) ◽  
pp. 2454-2463 ◽  
Author(s):  
Man Soo Kim ◽  
In Jun Koh ◽  
Sueen Sohn ◽  
Hoon Seok Sung ◽  
Yong In

Background: In osteoarthritis of the knee, subchondral bone marrow lesion (BML) is known to be significantly associated with the severity of pain. However, little is known about the influence of preoperative BML on postoperative outcomes after medial opening wedge high tibial osteotomy (MOWHTO). Purpose: To compare patient-reported outcomes for those who underwent MOWHTO according to the severity of BML based on magnetic resonance imaging. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 136 patients who underwent MOWHTO between June 2011 and May 2016 with clinical and radiologic assessments before and after surgery were retrospectively enrolled. Patients were divided into 2 groups according to the presence or absence of BMLs. They were then subdivided into 4 or 3 groups based on the sum of BML scores of the medial femoral condyle and tibial plateau according to MRI (magnetic resonance imaging) Osteoarthritis Knee Score or Filardo classification, respectively. Associations between the severity of BML and postoperative 1- and 2-year Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) subscores were evaluated through linear regression analysis. At postoperative 2 years, the rate of patients having a WOMAC score improvement of 15 points based on minimum clinically important difference and patient satisfaction were compared between groups. Results: BMLs were present in 96 (70.6%) of 136 cases. There were no significant differences in demographics or radiographic variables between groups according to the presence/absence or severity of BMLs (all P > .05). There was a significant association between preoperative or 1-year postoperative WOMAC pain/function score and the extent or intensity of BMLs (all P < .05). After adjusting for age, body mass index, osteoarthritis grade, and hip-knee-ankle angle, the significance persisted in the association between the extent or intensity of BMLs and WOMAC pain/function score at 1 year after surgery (all P < .05). However, a significant association was not found at postoperative 2 years (all P > .05). All groups showed similar rates of WOMAC score showing 15 points of improvement and satisfaction after MOWHTO (all P > .05). At 2 years after surgery, 82.5% of patients with BMLs were satisfied with their operation, as compared with 84.4% of those without BMLs ( P = .801). Conclusion: Although worse clinical outcomes were associated with severe BML during the recovery period, MOWHTO provided a high degree of clinical improvement on patient-reported outcomes regardless of the severity of BML at 2 years postoperatively.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2913 ◽  
Author(s):  
Abdul Razzaq Farooqi ◽  
Julius Zimmermann ◽  
Rainer Bader ◽  
Ursula van Rienen

The intrinsic regeneration potential of hyaline cartilage is highly limited due to the absence of blood vessels, lymphatics, and nerves, as well as a low cell turnover within the tissue. Despite various advancements in the field of regenerative medicine, it remains a challenge to remedy articular cartilage defects resulting from trauma, aging, or osteoarthritis. Among various approaches, tissue engineering using tailored electroactive scaffolds has evolved as a promising strategy to repair damaged cartilage tissue. In this approach, hydrogel scaffolds are used as artificial extracellular matrices, and electric stimulation is applied to facilitate proliferation, differentiation, and cell growth at the defect site. In this regard, we present a simulation model of electroactive hydrogels to be used for cartilage–tissue engineering employing open-source finite-element software FEniCS together with a Python interface. The proposed mathematical formulation was first validated with an example from the literature. Then, we computed the effect of electric stimulation on a circular hydrogel sample that served as a model for a cartilage-repair implant.


Biomaterials ◽  
2006 ◽  
Vol 27 (14) ◽  
pp. 2882-2889 ◽  
Author(s):  
Dirk Barnewitz ◽  
Michaela Endres ◽  
Ina Krüger ◽  
Anja Becker ◽  
Jürgen Zimmermann ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jan-Philipp Stromps ◽  
Nora Emilie Paul ◽  
Björn Rath ◽  
Mahtab Nourbakhsh ◽  
Jürgen Bernhagen ◽  
...  

According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs) and provides an outlook on promising future strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Dufour ◽  
Jérôme E. Lafont ◽  
Marie Buffier ◽  
Michaël Verset ◽  
Angéline Cohendet ◽  
...  

AbstractArticular cartilage is built by chondrocytes which become less active with age. This declining function of the chondrocytes, together with the avascular nature of the cartilage, impedes the spontaneous healing of chondral injuries. These lesions can progress to more serious degenerative articular conditions as in the case of osteoarthritis. As no efficient cure for cartilage lesions exist yet, cartilage tissue engineering has emerged as a promising method aiming at repairing joint defects and restoring articular function. In the present work, we investigated if a new self-assembling peptide (referred as IEIK13), combined with articular chondrocytes treated with a chondrogenic cocktail (BMP-2, insulin and T3, designated BIT) could be efficient to restore full-thickness cartilage defects induced in the femoral condyles of a non-human primate model, the cynomolgus monkey. First, in vitro molecular studies indicated that IEIK13 was efficient to support production of cartilage by monkey articular chondrocytes treated with BIT. In vivo, cartilage implant integration was monitored non-invasively by contrast-enhanced micro-computed tomography, and then by post-mortem histological analysis and immunohistochemical staining of the condyles collected 3 months post-implantation. Our results revealed that the full-thickness cartilage injuries treated with either IEIK13 implants loaded with or devoid of chondrocytes showed similar cartilage-characteristic regeneration. This pilot study demonstrates that IEIK13 can be used as a valuable scaffold to support the in vitro activity of articular chondrocytes and the repair of articular cartilage defects, when implanted alone or with chondrocytes.


Author(s):  
Yu. B. Basok ◽  
V. I. Sevastianov

Some of the most pressing health problems of the industrial society are the damage and degeneration of articular cartilage associated with the limited capacity of tissues to regenerate. The review describes the existing and developing technologies for the recovery and replacement of damaged joint cartilage tissue. The results obtained are analyzed covering two major areas: the stimulation of regeneration of damaged cartilage tissue and the growing of cartilage tissue elements in bioreactors.


2020 ◽  
Vol 9 (4) ◽  
pp. 1202
Author(s):  
Ulrich Koller ◽  
Bernhard Springer ◽  
Colleen Rentenberger ◽  
Pavol Szomolanyi ◽  
Wenzel Waldstein ◽  
...  

The effect of radiofrequency chondroplasty on cartilage tissue is not well studied. This prospective pilot study investigates the effect of radiofrequency chondroplasty on International Cartilage Repair Society (ICRS) grade II patellar cartilage defects using high-resolution magnetic resonance imaging (MRI) with T2 mapping. Six consecutive patients were treated for ICRS grade II patellar cartilage defects using radiofrequency chondroplasty. Before surgery and at defined follow-ups (2 weeks, 4 and 12 months) a high-resolution morphological 3 Tesla MRI with quantitative T2 mapping was performed. At baseline MRI, global T2 values of cartilage defects were increased (46.8 ms ± 9.7) compared to healthy cartilage (35.2 ms ± 4.5) in the same knee which served as reference. Two weeks after treatment, global T2 values (39.2 ms ± 7.7) of the defect areas decreased. However, global T2 values of the defect areas increased beyond the preoperative levels at 4 months (47.4 ms ± 3.1) and 12 months (51.5 ms ± 5.9), respectively. Zonal T2 mapping revealed that the predominant changes in T2 values occurred at the superficial cartilage layer. T2 mapping appears to be an ideal method to monitor cartilage degeneration after chondroplasty. Based on the small sample size of this pilot study, radiofrequency chondroplasty may cause cartilage damage and may not have a long-lasting effect in the treatment of grade II patellar cartilage defects. In five out of six patients, postoperative cartilage damage was observed on quantitative MRI. This study was therefore terminated before completion. We recommend only addressing the pathology which indicated arthroscopy and leaving concomitant cartilage lesions untreated.


Sign in / Sign up

Export Citation Format

Share Document