scholarly journals Intraoperative rotational kinematics and its influence on postoperative clinical outcomes differ according to age in Unicompartmental knee Arthroplasty

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kohei Kawaguchi ◽  
Hiroshi Inui ◽  
Shuji Taketomi ◽  
Ryota Yamagami ◽  
Kenichi Kono ◽  
...  

Abstract Background Although Oxford unicompartmental knee arthroplasty (UKA) is used in patients of wide age ranges, there is no clear information regarding the age differences in terms of intraoperative femorotibial rotational kinematics and its influence on clinical outcomes. Therefore, this study was conducted to examine the age differences in terms of intraoperative rotational kinematics and postoperative clinical outcomes and to analyze their relationship with classification according to the age group. Methods We investigated 111 knees of patients who underwent Oxford UKA using a navigation system and divided them into two groups: elderly (aged ≥75 years; 48 knees) and nonelderly (aged < 75 years; 63 knees). Intraoperative tibial internal rotational angles relative to the femur during passive knee flexion were measured using a navigation system, and clinical outcomes were evaluated using knee range of motion, the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Knee Society Functional Score at 2 years postoperatively. The relationships between intraoperative tibiofemoral rotational angles and clinical outcomes were also evaluated in the two groups. Results The intraoperative tibial internal rotational angle relative to the femur during knee flexion was significantly larger in the nonelderly group (13.5°) than in the elderly group (9.0°). The intraoperative tibial internal rotational angle showed a positive correlation with the pain subscale of KOOS only in the nonelderly group. Conclusion Intraoperative rotational kinematics and its influence on clinical outcomes were different between elderly and nonelderly patients, and the tibial internal rotational angle could be a more important factor for successful UKA in nonelderly patients.

2021 ◽  
Author(s):  
Kohei Kawaguchi ◽  
Hiroshi Inui ◽  
Shuji Taketomi ◽  
Ryota Yamagami ◽  
Kenichi Kono ◽  
...  

Abstract Background: Although Oxford unicompartmental knee arthroplasty (UKA) is used in patients of wide age ranges, there is no clear information regarding the age differences in terms of intraoperative femorotibial rotational kinematics and its influence on clinical outcomes. Therefore, this study was conducted to examine the age differences in terms of postoperative clinical outcomes and intraoperative rotational kinematics and to analyze their relationship with classification according to the age group.Methods: We investigated 111 knees of patients who underwent Oxford UKA using a navigation system and divided them into two groups: elderly (aged ≥75 years; 48 knees) and nonelderly (aged <75 years; 63 knees). Intraoperative tibial internal rotational angles relative to the femur during passive knee flexion were measured using a navigation system, and clinical outcomes were evaluated using knee range of motion, the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Knee Society Functional Score at 2 years postoperatively. The relationships between intraoperative tibiofemoral rotational angles and clinical outcomes were also evaluated in the two groups. Results: The intraoperative tibial internal rotational angle relative to the femur during knee flexion was significantly larger in the nonelderly group (13.5°) than in the elderly group (9.0°). The intraoperative tibial internal rotational angle showed a positive correlation with the pain subscale of KOOS only in the nonelderly group. Conclusion: Intraoperative rotational kinematics and its influence on clinical outcomes were different between elderly and nonelderly patients, and the tibial internal rotational angle could be a more important factor for successful UKA in nonelderly patients.


Author(s):  
Jung-Won Lim ◽  
Yong-Beom Park ◽  
Dong-Hoon Lee ◽  
Han-Jun Lee

AbstractThis study aimed to evaluate whether manipulation under anesthesia (MUA) affect clinical outcome including range of motion (ROM) and patient satisfaction after total knee arthroplasty (TKA). It is hypothesized that MUA improves clinical outcomes and patient satisfaction after primary TKA. This retrospective study analyzed 97 patients who underwent staged bilateral primary TKA. MUA of knee flexion more than 120 degrees was performed a week after index surgery just before operation of the opposite site. The first knees with MUA were classified as the MUA group and the second knees without MUA as the control group. ROM, Knee Society Knee Score, Knee Society Functional Score, Western Ontario and McMaster Universities (WOMAC) score, and patient satisfaction were assessed. Postoperative flexion was significantly greater in the MUA group during 6 months follow-up (6 weeks: 111.6 vs. 99.8 degrees, p < 0.001; 3 months: 115.9 vs. 110.2 degrees, p = 0.001; 6 months: 120.2 vs. 117.0 degrees, p = 0.019). Clinical outcomes also showed similar results with knee flexion during 2 years follow-up. Patient satisfaction was significantly high in the MUA group during 12 months (3 months: 80.2 vs. 71.5, p < 0.001; 6 months: 85.8 vs. 79.8, p < 0.001; 12 months: 86.1 vs. 83.9, p < 0.001; 24 months: 86.6 vs. 85.5, p = 0.013). MUA yielded improvement of clinical outcomes including ROM, and patient satisfaction, especially in the early period after TKA. MUA in the first knee could be taken into account to obtain early recovery and to improve patient satisfaction in staged bilateral TKA.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meredith P. Crizer ◽  
Amer Haffar ◽  
Andrew Battenberg ◽  
Mikayla McGrath ◽  
Ryan Sutton ◽  
...  

Robotic technology has reduced the errors of implant alignment in unicompartmental knee arthroplasty (UKA), but its impact on functional recovery after UKA is poorly defined. The purpose of this study was to compare early functional recovery, pain levels, and satisfaction in UKA performed with either robotic assistance or conventional methods. A retrospective analysis was performed on 89 matched consecutive patients who underwent outpatient UKA by a single physician using either conventional instruments (n = 39) or robotic methods (n = 50), with otherwise identical perioperative protocols. Outcomes studied included Lower Extremity Functional Score (LEFS), new Knee Society Score (KSS), Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS-JR.), VR/SF-12, Visual Analog Scale (VAS) pain scores, and perioperative opioid consumption. Patients in the robotic cohort had superior early functional outcomes, with greater LEFS (conventional = 23; robotic = 31) at 1 week post-op p = 0.015 and KOOS-JR (conventional = 74; robotic = 81) at up to 6 months post-op p = 0.037 ; these two values remained statistically significant after mixed-model regression analysis p = 0.010 ; p = 0.023 , respectively. At 1 year post-op, expectations were more likely to be met in those who received robotic assistance p = 0.06 . No differences were reported with respect to postoperative opioid usage p = 0.320 , reoperations p = 1.00 , and complications p = 0.628 . Robotic-assisted UKA resulted in more rapid recovery and less early postoperative pain and were more likely to meet expectations than conventional UKA, although functional differences equilibrated by 1 year postoperatively. Further follow-up is necessary to determine if implant durability is impacted by robotics.


Sign in / Sign up

Export Citation Format

Share Document