scholarly journals Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daisuke Chiba ◽  
Norikazu Yamada ◽  
Yu Mori ◽  
Masamizu Oyama ◽  
Susumu Ohtsu ◽  
...  

Abstract Background This study was performed to investigate the mid-term results of Ti-Nb-Sn (TNS) alloy stem with a low Young’s modulus. Methods This study was a multicenter prospective cohort study. A total of 40 primary total hip arthroplasties performed between April 2016 and September 2017 was enrolled in this study. With the unique functional gradient properties by heating treatment, the strength of the proximal portion was enhanced, while the distal portion maintained a low Young’s modulus. The surgeries were performed through the posterolateral approach using the TNS alloy stems. Radiographs were taken from immediately after surgeries until 3 years, and stress shielding and subsidence of the stems were evaluated. The incidences of the stem breakage were also assessed. Clinical assessments were performed using Japanese Orthopaedic Association (JOA) and Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) scores. Results Among the 40 enrolled patients, 36 patients were female and 4 were male. At 3 years after surgery, there were no radiologic signs of loosening, subsidence, or breakage of the stem. Stress shielding was observed in 26 hips (65%). Of 26 hips, 16 hips (40%) were grade 1 and 10 hips (25%) were grade 2. There was no advanced stress shielding. The JOA and JHEQ scores significantly improved compared with the preoperative scores. Conclusion The current study using a new TNS alloy femoral stem showed good clinical outcomes at 3-year follow-up. Radiologically, there was no loosening or subsidence of the stem. The mild stress shielding was observed in 65% of patients. Trial registration Current Controlled Trials ISRCTN21241251. The date of registration was October 26, 2021. Retrospectively registered.

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


RSC Advances ◽  
2020 ◽  
Vol 10 (40) ◽  
pp. 23582-23591
Author(s):  
Xin Liu ◽  
Yumei Niu ◽  
Weili Xie ◽  
Daqing Wei ◽  
Qing Du

To avoid the failure of clinical surgery due to “stress shielding” and the loosening of an implant, a new type of alloy, Ti–24Nb–4Zr–8Sn (TNZS), with a low Young's modulus acted as a new implant material in this work.


2020 ◽  
Vol 321 ◽  
pp. 05002
Author(s):  
Takayoshi Nakano ◽  
Takuya Ishimoto ◽  
Aira Matsugaki ◽  
Koji Hagihara ◽  
Yuichiro Koizumi ◽  
...  

Variation in the scanning strategy for β-type Ti alloys during additive manufacturing (AM) enables the fabrication of a singlecrystal-like microstructure possessing a crystallographic texture, in which the low-Young’s modulus-<100> direction is aligned along a specific direction. Thus, metal biomaterial with low elasticity, comparable to the bone Young’s modulus, can be developed by AM, which will contribute to suppress the stress shielding of bone and prevent degradation of bone tissue anisotropy.


2015 ◽  
Vol 76 (7) ◽  
Author(s):  
Nur Hidayatul Nadhirah Elmi Azham Shah ◽  
Mazyan Yahaya ◽  
Maheran Sulaiman ◽  
Muhammad Hussain Ismail

Titanium (Ti)-based alloys are prominently used in biomedical application. This review paper emphasizes on some of the important aspects of the Ti-alloys in terms of metallurgical aspects, manufacturing routes and biocompatibility. Two kinds of structure are reviewed namely dense and porous, both differs in terms of purpose and satisfies different needs. This advancement of materials and equipment helps to improve the quality of life for patients and alleviate their health problems. Metallic materials, mainly Ti-based alloys have been used commercially as bone implant owing to its promising mechanical properties, biocompatibility and bioactivity. The outmost important issue in manufacturing  of  this  alloy  is  the  impurity  contents,  specifically  oxygen  and  carbon  which contribute   to decreasing in material performance of the alloy attributed from the formation of unwanted  oxide compounds such as TiO2 and  TiC. Another issue is the mismatch value of the Young’s modulus between the metallic implant and bone that result in stress shielding effect.  The structure of Ti-based  alloy is  mainly comprised of α-phase, β-phase or a combination of  both that result in variation of Young’s modulus ranging from 45 -110 GPa. Compared to α-phase Ti alloy, the β-phase rich alloys may exhibit lower value of Young modulus through the right processing technique. Therefore, the development of β-phase Ti-alloys has been researched progressively in line with the need of low Young’s modulus that suit for implant applications.


2016 ◽  
Vol 869 ◽  
pp. 952-956 ◽  
Author(s):  
Sinara Borborema Gabriel ◽  
Jean Dille ◽  
Carlos Angelo Nunes ◽  
Emanuel Santos Jr. ◽  
Renato Baldan ◽  
...  

Mechanical properties of metastable β-Ti alloys are highly dependent on the final microstructure, which is controlled by the thermomechanical processing. These alloys are used for biomedical applications and require a high mechanical strength as well as a low Young’s modulus to avoid stress shielding. Previous work on the development of cold swaged Ti-10Mo-20Nb alloy showed that the best compromise strength and Young ́s modulus was obtained when the forming is followed by an aging heat treatment at 500 oC. In this work, Ti-10Mo-20Nb alloy was hot swaged and aged at 500 oC for 10 min, 4h and 24h. The microstructure was analyzed by X-ray diffraction, optical microscopy and transmission electron microscopy. Mechanical characterization was based on Vickers microhardness tests and Young’s modulus measurements. Aging at 500 oC for 10 min after hot swaging resulted in a nearly 100% β phase microstructure while aging at 500°C for 4h or 24h led to a bimodal microstructure consisting on α precipitates dispersed in the β matrix. The higher hardness to Young’s modulus ratio was obtained for the sample aged at 500 °C for 4h. This value was higher than those obtained for the Ti-6Al-4V alloy and commercially pure Ti.


2014 ◽  
Vol 783-786 ◽  
pp. 1307-1312 ◽  
Author(s):  
Masaaki Nakai ◽  
Mitsuo Niinomi ◽  
Junko Hieda ◽  
Ken Cho ◽  
Kengo Narita ◽  
...  

In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, beta (β) -type Ti-Mo alloys with self-tunable Young’s modulus due to deformation have been developed to prevent the stress-shielding effect for patients and to suppress springback for surgeons. In this study, the effects of Mo on the deformation-induced omega-phase transformation were investigated and then the Mo content in binary Ti-Mo alloys was optimized in order to achieve a large increase in Young’s modulus via deformation-induced omega-phase transformation, leading to suppression of springback.


2013 ◽  
Vol 575-576 ◽  
pp. 453-460
Author(s):  
Hui Hong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Ken Cho

A novel β-type titanium alloy with a changeable Youngs modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, should be developed in order to satisfy the conflicting requirements of both the patients and surgeons in spinal fixation operations. In this study, the oxygen content in ternary Ti-11Cr-O alloys was optimized in order to achieve a large changeable Young's modulus with good mechanical properties for spinal fixation applications. The increase in Youngs moduli of all the examined alloys by cold rolling is attributed to the deformation-induced ω-phase transformation which is suppressed by oxygen. Among the examined alloys, the Ti-11Cr-0.2O alloy exhibits the largest changeable Youngs modulus and a high tensile strength with an acceptable plasticity under both solution-treated (ST) and cold-rolled (CR) conditions. Therefore, the Ti-11Cr-0.2O alloy, which shows a good balance among a changeable Youngs modulus, high tensile strength and good plasticity, is considered a potential candidate for spinal fixation applications.


Sign in / Sign up

Export Citation Format

Share Document