scholarly journals Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Guangbo ◽  
Shu Min ◽  
Shen Wei ◽  
Ma Lixin ◽  
Zhai Chao ◽  
...  

Abstract Background Nattokinase is a fibrinolytic enzyme that has huge market value as a nutritional supplement for health promotion. In order to increase nattokinase yields, fermentation conditions, strains, cultivation media, and feeding strategies have been optimized. Nattokinase has been expressed using several heterologous expression systems. Pichia pastoris heterologous expression system was the alternative. Results This report aimed to express high levels of nattokinase from B. subtilis natto (NK-Bs) using a Pichia pastoris heterologous expression system and assess its fibrinolytic activity in vivo. Multicopy expression strains bearing 1–7 copies of the aprN gene were constructed. The expression level of the target protein reached a maximum at five copies of the target gene. However, multicopy expression strains were not stable in shake-flask or high-density fermentation, causing significant differences in the yield of the target protein among batches. Therefore, P. pastoris bearing a single copy of aprN was used in shake-flask and high-density fermentation. Target protein yield was 320 mg/L in shake-flask fermentation and approximately 9.5 g/L in high-density fermentation. The recombinant nattokinase showed high thermo- and pH-stability. The present study also demonstrated that recombinant NK-Bs had obvious thrombolytic activity. Conclusions This study suggests that the P. pastoris expression system is an ideal platform for the large-scale, low-cost preparation of nattokinase.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


Archaea ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kian-Hong Ng ◽  
Vinayaka Srinivas ◽  
Ramanujam Srinivasan ◽  
Mohan Balasubramanian

Euryarchaeota and Crenarchaeota are two major phyla of archaea which use distinct molecular apparatuses for cell division. Euryarchaea make use of the tubulin-related protein FtsZ, while Crenarchaea, which appear to lack functional FtsZ, employ the Cdv (cell division) components to divide. Ammonia oxidizing archaeon (AOA)Nitrosopumilus maritimusbelongs to another archaeal phylum, the Thaumarchaeota, which has both FtsZ and Cdv genes in the genome. Here, we used a heterologous expression system to characterize FtsZ and Cdv proteins fromN. maritimusby investigating the ability of these proteins to form polymers. We show that one of the Cdv proteins inN. maritimus, the CdvB (Nmar_0816), is capable of forming stable polymers when expressed in fission yeast. TheN. maritimusCdvB is also capable of assembling into filaments in mammalian cells. However,N. maritimusFtsZ does not assemble into polymers in our system. The ability of CdvB, but not FtsZ, to polymerize is consistent with a recent finding showing that several Cdv proteins, but not FtsZ, localize to the mid-cell site in the dividingN. maritimus. Thus, we propose that it is Cdv proteins, rather than FtsZ, that function as the cell division apparatus inN. maritimus.


2018 ◽  
Vol 200 (7) ◽  
Author(s):  
Zhe Lyu ◽  
Chau-Wen Chou ◽  
Hao Shi ◽  
Liangliang Wang ◽  
Robel Ghebreab ◽  
...  

ABSTRACTMethyl coenzyme M reductase (MCR) is a complex enzyme that catalyzes the final step in biological methanogenesis. To better understand its assembly, the recombinant MCR from the thermophileMethanothermococcus okinawensis(rMCRok) was expressed in the mesophileMethanococcus maripaludis. The rMCRokwas posttranslationally modified correctly and contained McrD and the unique nickel tetrapyrrole coenzyme F430. Subunits of the nativeM. maripaludis(MCRmar) were largely absent, suggesting that the recombinant enzyme was formed by an assembly of cotranscribed subunits. Strong support for this hypothesis was obtained by expressing a chimeric operon comprising the His-taggedmcrAfromM. maripaludisand themcrBDCGfromM. okinawensisinM. maripaludis. The His-tagged purified rMCR then contained theM. maripaludisMcrA and theM. okinawensisMcrBDG. The present study prompted us to form a working model for MCR assembly, which can be further tested by the heterologous expression system established here.IMPORTANCEApproximately 1.6% of the net primary production of plants, algae, and cyanobacteria are processed by biological methane production in anoxic environments. This accounts for about 74% of the total global methane production, up to 25% of which is consumed by anaerobic oxidation of methane (AOM). Methyl coenzyme M reductase (MCR) is the key enzyme in both methanogenesis and AOM. MCR is assembled as a dimer of two heterotrimers, where posttranslational modifications and F430cofactors are embedded in the active sites. However, this complex assembly process remains unknown. Here, we established a heterologous expression system for MCR to learn how MCR is assembled.


Sign in / Sign up

Export Citation Format

Share Document