scholarly journals High-resolution structure of the amino acid transporter AdiC reveals insights into the role of water molecules and networks in oligomerization and substrate binding

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hüseyin Ilgü ◽  
Jean-Marc Jeckelmann ◽  
David Kalbermatter ◽  
Zöhre Ucurum ◽  
Thomas Lemmin ◽  
...  

Abstract Background The L-arginine/agmatine transporter AdiC is part of the arginine-dependent extreme acid resistance system of the bacterium Escherichia coli and its pathogenic varieties such as strain E. coli O157:H7. At the present time, there is a lack of knowledge concerning the role of water molecules and networks for the structure and function of AdiC, and solute transporters in general. Results The structure of the L-arginine/agmatine transporter AdiC was determined at 1.7 Å resolution by X-ray crystallography. This high resolution allowed for the identification of numerous water molecules buried in the structure. In combination with molecular dynamics (MD) simulations, we demonstrate that water molecules play an important role for stabilizing the protein and key residues, and act as placeholders for atoms of the AdiC substrates L-arginine and agmatine. MD simulations unveiled flexibility and restrained mobility of gating residues W202 and W293, respectively. Furthermore, a water-filled cavity was identified at the dimer interface of AdiC. The two monomers formed bridging interactions through water-mediated hydrogen bonds. The accessibility and presence of water molecules in this cavity was confirmed with MD simulations. Point mutations disrupting the interfacial water network validated the importance of water molecules for dimer stabilization. Conclusions This work gives new insights into the role and importance of water molecules in the L-arginine/agmatine transporter AdiC for protein stabilization and substrate-binding site shaping and as placeholders of substrate atoms. Furthermore, and based on the observed flexibility and restrained mobility of gating residues, a mechanistic role of the gate flexibility in the transport cycle was proposed. Finally, we identified a water-filled cavity at the dimeric interface that contributes to the stability of the amino acid transporter oligomer.

2021 ◽  
Vol 22 (4) ◽  
pp. 1707
Author(s):  
Sebastian Granitzer ◽  
Raimund Widhalm ◽  
Martin Forsthuber ◽  
Isabella Ellinger ◽  
Gernot Desoye ◽  
...  

The placental barrier can protect the fetus from contact with harmful substances. The potent neurotoxin methylmercury (MeHg), however, is very efficiently transported across the placenta. Our previous data suggested that L-type amino acid transporter (LAT)1 is involved in placental MeHg uptake, accepting MeHg-L-cysteine conjugates as substrate due to structural similarity to methionine. The aim of the present study was to investigate the antioxidant defense of placental cells to MeHg exposure and the role of LAT1 in this response. When trophoblast-derived HTR-8/SVneo cells were LAT1 depleted by siRNA-mediated knockdown, they accumulated less MeHg. However, they were more susceptible to MeHg-induced toxicity. This was evidenced in decreased cell viability at a usually noncytotoxic concentration of 0.03 µM MeHg (~6 µg/L). Treatment with ≥0.3 µM MeHg increased cytotoxicity, apoptosis rate, and oxidative stress of HTR-8/SVneo cells. These effects were enhanced under LAT1 knockdown. Reduced cell number was seen when MeHg-exposed cells were cultured in medium low in cysteine, a constituent of the tripeptide glutathione (GSH). Because LAT1-deficient HTR-8/SVneo cells have lower GSH levels than control cells (independent of MeHg treatment), we conclude that LAT1 is essential for de novo synthesis of GSH, required to counteract oxidative stress. Genetic predisposition to decreased LAT1 function combined with MeHg exposure could increase the risk of placental damage.


Author(s):  
Ran Li ◽  
Xiaocui Tang ◽  
Changqiong Xu ◽  
Yinrui Guo ◽  
Longkai Qi ◽  
...  

Background: Astroglioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for astroglioma. In the present study, the extract (L3) from Ganoderma Lucidum (G.lucidum) was found to inhibit the growth of astroglioma U87 cells and change the expression of circular RNAs (circRNAs). One of these, including the circular NF1-419 (circNF1-419), was of interest because NF1 gene is a classic tumor suppressor gene. Objective: The functional role of circ-NF1-419 in the inhibition of astroglioma cells remains unknown. This study focuses on the role of circNF1-419 in functional abnormalities of U87 astroglioma cells and aims to elaborate on its regulatory mechanism. Methods: The circNF1-419 overexpressing U87 (U87-NF1-419) cells were constructed. We generated U87-NF1-419 to evaluate the role of circNF1-419 on cell cycle, apoptosis, proliferation, tumor growth and metabolic regulation. Finally, we used docking screening to identify compounds in G. lucidum extracts that target circ-419. Results: U87-NF1-419 can promote cell apoptosis and regulate lipid metabolism through glycerophospholipid metabolism and retrograde endocannabinoid signaling. Further examinations revealed that the expression of metabolic regulators, such as L-type voltage-operated calcium channels (L-VOCC), phospholipase C-β3 (PLCβ3), Mucin1, cationic amino acid transporter 4 (CAT4), cationic amino acid transporter 1 (CAT1) and a kinase (PRKA) anchor protein 4 (AKAP4) was inhibited, while phosphatidylserine synthase 1 (PTDSS1) was enhanced in U87-NF1-419 cells. In vivo experiments showed that circNF1-419 inhibits tumor growth in BALB/C nude mice, and enhanced AKAP4 and PTDSS1 in tumor tissues. The virtual docking screening results supported that ganosporeric acid A, ganodermatriol, ganoderic acid B and α-D-Arabinofuranosyladenine in L3 could activate circNF1-419 in astroglioma treatment. Conclusion: This study indicated that circNF1-419 could be a therapeutic target for the clinical treatment of astroglioma. L3 from Ganoderma Lucidum (G.lucidum) could inhibit astroglioma growth by activating circNF1-419.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78116 ◽  
Author(s):  
James D. Zook ◽  
Trivikram R. Molugu ◽  
Neil E. Jacobsen ◽  
Guangxin Lin ◽  
Jürgen Soll ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 2327-2337 ◽  
Author(s):  
Shin-ichi Akanuma ◽  
Atsuko Yamakoshi ◽  
Takeshi Sugouchi ◽  
Yoshiyuki Kubo ◽  
Anika M. S. Hartz ◽  
...  

Neuroscience ◽  
2016 ◽  
Vol 333 ◽  
pp. 311-319 ◽  
Author(s):  
Jahangir Sajjad ◽  
Valeria D. Felice ◽  
Anna V. Golubeva ◽  
John F. Cryan ◽  
Siobhain M. O’Mahony

2016 ◽  
Vol 61 ◽  
pp. S73
Author(s):  
Y. Cormerais ◽  
S. Giuliano ◽  
P.A. Massard ◽  
J. Durivault ◽  
E. Hitoshi ◽  
...  

Author(s):  
Jacob T. Andring ◽  
Robert McKenna ◽  
Bruce R. Stevens

ABSTRACTSARS-CoV-2 exhibits significant experimental and clinical gastrointestinal, renal, and cardiac muscle tropisms responsible for local tissue-specific and systemic pathophysiology capriciously occurring in about half of COVID-19 patients. The underlying COVID-19 mechanisms engaged by these extra-pulmonary organ systems are largely unknown. We approached this knowledge gap by recognizing that neutral amino acid transporter B0AT1 (alternately called NBB, B, B0 in the literature) is a common denominator expressed nearly exclusively by three particular cell types: intestinal epithelia, renal proximal tubule epithelium, and cardiomyocytes. B0AT1 provides uptake of glutamine and tryptophan. The gut is the main depot expressing over 90% of the body’s entire pool of SARS-CoV-2 receptor angiotensin converting enzyme-2 (ACE2) and B0AT1. Recent cryo-EM studies established that ACE2 forms a thermodynamically favored dimer-of-heterodimers complex with B0AT1 assembled in the form of a dimer of two ACE2:B0AT1 heterodimers anchored in plasma membranes. Prior epithelial cell studies demonstrated ACE2 chaperone trafficking of B0AT1. This contrasts with monomeric expression of ACE2 in lung pneumocytes, in which B0AT1 is undetectable. The cell types in question also express a disintegrin and metalloproteinase-17 (ADAM17) known to cleave and shed the ectodomain of monomeric ACE2 from the cell surface, thereby relinquishing protection against unchecked renin-angiotensin-system (RAS) events of COVID-19. The present study employed molecular docking modeling to examine the interplaying assemblage of ACE2, ADAM17 and B0AT1. We report that in the monomer form of ACE2, neck region residues R652-N718 provide unimpeded access to ADAM17 active site pocket, but notably R708 and S709 remained >10-15 Å distant. In contrast, interference of ADAM17 docking to ACE2 in a dimer-of-heterodimers arrangement was directly correlated with the presence of a neighboring B0AT1 subunit complexed to the partnering ACE2 subunit of the 2ACE2:2B0AT1] dimer of heterodimers, representing the expression pattern putatively exclusive to intestinal, renal and cardiomyocyte cell types. The monomer and dimer-of-heterodimers docking models were not influenced by the presence of SARS-CoV-2 receptor binding domain (RBD) complexed to ACE2. The results collectively provide the underpinnings for understanding the role of B0AT1 involvement in COVID-19 and the role of ADAM17 steering ACE2 events in intestinal and renal epithelial cells and cardiomyocytes, with implications useful for consideration in pandemic public hygiene policy and drug development.


Sign in / Sign up

Export Citation Format

Share Document