scholarly journals Proteogenomics analysis of CUG codon translation in the human pathogen Candida albicans

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Stefanie Mühlhausen ◽  
Hans Dieter Schmitt ◽  
Uwe Plessmann ◽  
Peter Mienkus ◽  
Pia Sternisek ◽  
...  

Abstract Background Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser . Previously reported experiments have suggested that 3–5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser . The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Results In this study, we reassess this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, including various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our data do not support a bias towards CUG codon mistranslation as leucine. Instead, our data suggest that (i) CUG codons are mistranslated at a frequency corresponding to the normal extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans’ strain pathogenicity or growth form. Conclusions Our findings imply that C. albicans does not decode CUG ambiguously. This suggests that the proposed misleucylation of the $$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$ tRNA CAG Ser might be as prevalent as every other misacylation or mistranslation event and, if at all, be just one of many reasons causing phenotypic diversity.

2020 ◽  
Author(s):  
Stefanie Mühlhausen ◽  
Hans Dieter Schmitt ◽  
Uwe Plessmann ◽  
Peter Mienkus ◽  
Pia Sternisek ◽  
...  

AbstractCandida yeasts causing human infections are spread across the yeast phylum with Candida glabrata being related to Saccharomyces cerevisiae, Candida krusei grouping to Pichia spp., and Candida albicans, Candida parapsilosis and Candida tropicalis belonging to the CTG-clade. The latter lineage contains yeasts with an altered genetic code translating CUG codons as serine using a serine-tRNA with a mutated anticodon. It has been suggested that the CTG-clade CUG codons are mistranslated to a small extent as leucine due to mischarging of the serine-tRNA(CAG). The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Here, we re-assessed this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our in vivo data do not support CUG codon mistranslation by leucine. Instead, (i) CUG codons are mistranslated only to the extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans’ strain pathogenicity or growth form.


Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Burkhard R Braun ◽  
Alexander D Johnson

Abstract The common fungal pathogen, Candida albicans, can grow either as single cells or as filaments (hyphae), depending on environmental conditions. Several transcriptional regulators have been identified as having key roles in controlling filamentous growth, including the products of the TUP1, CPH1, and EFG1 genes. We show, through a set of single, double, and triple mutants, that these genes act in an additive fashion to control filamentous growth, suggesting that each gene represents a separate pathway of control. We also show that environmentally induced filamentous growth can occur even in the absence of all three of these genes, providing evidence for a fourth regulatory pathway. Expression of a collection of structural genes associated with filamentous growth, including HYR1, ECE1, HWP1, ALS1, and CHS2, was monitored in strains lacking each combination of TUP1, EFG1, and CPH1. Different patterns of expression were observed among these target genes, supporting the hypothesis that these three regulatory proteins engage in a network of individual connections to downstream genes and arguing against a model whereby the target genes are regulated through a central filamentous growth pathway. The results suggest the existence of several distinct types of filamentous forms of C. albicans, each dependent on a particular set of environmental conditions and each expressing a unique set of surface proteins.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Burkhard R Braun ◽  
W Steven Head ◽  
Ming X Wang ◽  
Alexander D Johnson

Abstract TUP1 encodes a transcriptional repressor that negatively controls filamentous growth in Candida albicans. Using subtractive hybridization, we identified six genes, termed repressed by TUP1 (RBT), whose expression is regulated by TUP1. One of the genes (HWP1) has previously been characterized, and a seventh TUP1-repressed gene (WAP1) was recovered due to its high similarity to RBT5. These genes all encode secreted or cell surface proteins, and four out of the seven (HWP1, RBT1, RBT5, and WAP1) encode putatively GPI-modified cell wall proteins. The remaining three, RBT2, RBT4, and RBT7, encode, respectively, an apparent ferric reductase, a plant pathogenesis-related protein (PR-1), and a putative secreted RNase T2. The expression of RBT1, RBT4, RBT5, HWP1, and WAP1 was induced in wild-type cells during the switch from the yeast form to filamentous growth, indicating the importance of TUP1 in regulating this process and implicating the RBTs in hyphal-specific functions. We produced knockout strains in C. albicans for RBT1, RBT2, RBT4, RBT5, and WAP1 and detected no phenotypes on several laboratory media. However, two animal models for C. albicans infection, a rabbit cornea model and a mouse systemic infection model, revealed that rbt1Δ and rbt4Δ strains had significantly reduced virulence. TUP1 appears, therefore, to regulate many genes in C. albicans, a significant fraction of which are induced during filamentous growth, and some of which participate in pathogenesis.


2018 ◽  
Vol 4 ◽  
pp. 10-19 ◽  
Author(s):  
Hélène Martin-Yken ◽  
Tina Bedekovic ◽  
Alexandra C. Brand ◽  
Mathias L. Richard ◽  
Sadri Znaidi ◽  
...  

Photochem ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 505-522
Author(s):  
Paula V. Cordero ◽  
Darío D. Ferreyra ◽  
María E. Pérez ◽  
María G. Alvarez ◽  
Edgardo N. Durantini

Photocytotoxic activity sensitized by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was investigated in Candida albicans under different culture conditions. Planktonic cells incubated with 2.5 μM TAPC were eradicated after 5 min irradiation with white light. Studies in the presence of reactive oxygen species scavengers indicated the involvement of mainly a type II mechanism. Furthermore, cell growth of C. albicans was suppressed in the presence of 5 μM TAPC. A decrease in pseudohyphae survival of 5 log was found after 30 min irradiation. However, the photokilling of this virulence factor reached a 1.5 log reduction in human serum. The uptake of TAPC by pseudohyphae decreased in serum due to the interaction of TAPC with albumin. The binding constant of the TAPC-albumin complex was ~104 M−1, while the bimolecular quenching rate constant was ~1012 s−1 M−1, indicating that this process occurred through a static process. Thus, the photoinactivation of C. albicans was considerably decreased in the presence of albumin. A reduction of 2 log in cell survival was observed using 4.5% albumin and 30 min irradiation. The results allow optimizing the best conditions to inactivate C. albicans under different culture conditions.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jun Tang ◽  
Xueshuang Huang ◽  
Ming-Hang Cao ◽  
Zhiyan Wang ◽  
Zhiyin Yu ◽  
...  

During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with β-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 μg/ml) as the positive control.


2017 ◽  
Vol 68 (2) ◽  
pp. 220-231 ◽  
Author(s):  
Gábor Máté ◽  
Dominika Kovács ◽  
Zoltán Gazdag ◽  
Miklós Pesti ◽  
Árpád Szántó

Sign in / Sign up

Export Citation Format

Share Document