scholarly journals African swine fever virus transmission cycles in Central Europe: Evaluation of wild boar-soft tick contacts through detection of antibodies against Ornithodoros erraticus saliva antigen

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Jana Pietschmann ◽  
Lina Mur ◽  
Sandra Blome ◽  
Martin Beer ◽  
Ricardo Pérez-Sánchez ◽  
...  
Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 168
Author(s):  
Rémi Pereira De Oliveira ◽  
Evelyne Hutet ◽  
Maxime Duhayon ◽  
Frédéric Paboeuf ◽  
Marie-Frédérique Le Potier ◽  
...  

Ornithodoros soft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of Suidae. The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected Ornithodoros moubata, a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect O. moubata through co-feeding on domestic pigs. In our experimental conditions, tick-to-tick virus transmission through co-feeding failed, although pigs became infected through the infectious tick bite.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 757
Author(s):  
Sandra Barroso-Arévalo ◽  
Jose A. Barasona ◽  
Estefanía Cadenas-Fernández ◽  
José M. Sánchez-Vizcaíno

African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.


2019 ◽  
Vol 19 (7) ◽  
pp. 512-524 ◽  
Author(s):  
Andrew J. Golnar ◽  
Estelle Martin ◽  
Jillian D. Wormington ◽  
Rebekah C. Kading ◽  
Pete D. Teel ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mariia Nefedeva ◽  
Ilya Titov ◽  
Sodnom Tsybanov ◽  
Alexander Malogolovkin

AbstractThe recombination is one of the most frequently identified drivers of double-stranded DNA viruses evolution. However, the recombination events in African swine fever virus (ASFV) genomes have been poorly annotated. We hypothesize that the genetic determinants of ASFV variability are potential hot-spots for recombination. Here, we analyzed ASFV serotype-specific locus (C-type lectin (EP153R) and CD2v (EP402R)) in order to allocate the recombination breakpoints in these immunologically important proteins and reveal driving forces of virus evolution. The recombinations were found in both proteins, mostly among ASFV strains from East Africa, where multiple virus transmission cycles are notified. The recombination events were essentially associated with the domain organization of proteins. The phylogenetic analysis demonstrated the lack of clonal evolution for African strains which conclusively support the significance of recombinations in the serotype-specific locus. In addition, the signature of adaptive evolution of these two genes, pN/pS > 1, was demonstrated. These results have implications for the interpretation of cross-protection potential between evolutionary distant ASFV strains and strongly suggest that C-type lectin and CD2v may experience substantial selective pressure than previously thought.


2020 ◽  
Vol 10 (6) ◽  
pp. 2846-2859 ◽  
Author(s):  
Kim M. Pepin ◽  
Andrew J. Golnar ◽  
Zaid Abdo ◽  
Tomasz Podgórski

Sign in / Sign up

Export Citation Format

Share Document