scholarly journals Comprehensive analysis of miRNA–mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiahe Wu ◽  
Jianlei Cao ◽  
Yongzhen Fan ◽  
Chenze Li ◽  
Xiaorong Hu

Abstract Background Chronic chagasic cardiomyopathy (CCC) is the leading cause of heart failure in Latin America and often causes severe inflammation and fibrosis in the heart. Studies on myocardial function and its molecular mechanisms in patients with Chronic chagasic cardiomyopathy are very limited. In order to understand the development and progression of Chronic chagasic cardiomyopathy and find targets for its diagnosis and treatment, the field needs to better understand the exact molecular mechanisms involved in these processes. Methods The mRNA microarray datasets GSE84796 (human) and GSE24088 (mouse) were obtained from the Gene Expression Omnibus (GEO) database. Homologous genes between the two species were identified using the online database mining tool Biomart, followed by differential expression analysis, gene enrichment analysis and protein–protein interaction (PPI) network construction. Cytohubba plug-in of Cytoscape software was used to identify Hub gene, and miRNet was used to construct the corresponding miRNA–mRNA regulatory network. miRNA-related databases: miRDB, Targetscan and miRWalk were used to further evaluate miRNAs in the miRNA–mRNA network. Furthermore, Comparative Toxicogenomics Database (CTD) and L1000 Platform were used to identify hub gene-related drugs. Results A total of 86 homologous genes were significantly differentially expressed in the two datasets, including 73 genes with high expression and 13 genes with low expression. These differentially expressed genes were mainly enriched in the terms of innate immune response, signal transduction, protein binding, Natural killer cell mediated cytotoxicity, Tuberculosis, Chemokine signaling pathway, Chagas disease and PI3K−Akt signaling pathway. The top 10 hub genes LAPTM5, LCP1, HCLS1, CORO1A, CD48, TYROBP, RAC2, ARHGDIB, FERMT3 and NCF4 were identified from the PPI network. A total of 122 miRNAs were identified to target these hub genes and 30 of them regulated two or more hub genes at the same time. miRDB, Targetscan and miRWalk were further analyzed and screened out hsa-miR-34c-5p, hsa-miR-34a-5p and hsa-miR-16-5p as miRNAs regulating these hub genes. Finally, Progesterone, Flutamide, Nimesulide, Methotrexate and Temozolomide were identified to target these hub genes and might be targeted therapies for Chronic chagasic cardiomyopathy. Conclusions In this study, the potential genes associated with Chronic chagasic cardiomyopathy are identified and a miRNA–mRNA regulatory network is constructed. This study explores the molecular mechanisms of Chronic chagasic cardiomyopathy and provides important clues for finding new therapeutic targets.

2021 ◽  
Author(s):  
Jiahe Wu ◽  
Jianlei Cao ◽  
Yongzhen Fan ◽  
Chenze Li ◽  
Xiaorong Hu

Abstract Background: Chronic chagasic cardiomyopathy (CCC) is the leading cause of heart failure in Latin America and often causes severe inflammation and fibrosis in the heart. Studies on myocardial function and its molecular mechanisms in patients with Chronic chagasic cardiomyopathy are very limited. In order to understand the development and progression of Chronic chagasic cardiomyopathy and find targets for its diagnosis and treatment, the field needs to better understand the exact molecular mechanisms involved in these processes.Methods: The mRNA microarray datasets GSE84796 (human) and GSE24088 (mouse) were obtained from the Gene Expression Omnibus (GEO) database. Homologous genes between the two species were identified using the online database mining tool Biomart, followed by differential expression analysis, gene enrichment analysis and protein-protein interaction (PPI) network construction. Cytohubba plug-in of Cytoscape software was used to identify Hub gene, and miRNet was used to construct the corresponding miRNA-mRNA regulatory network. Furthermore, Comparative Toxicogenomics Database (CTD) was used to identify hub gene-related drugs. Results: A total of 86 homologous genes were significantly differentially expressed in the two datasets, including 73 genes with high expression and 13 genes with low expression. These differentially expressed genes were mainly enriched in the terms of innate immune response, signal transduction, protein binding, Natural killer cell mediated cytotoxicity, Tuberculosis, Chemokine signaling pathway, Chagas disease and PI3K−Akt signaling pathway. The top 10 hub genes LAPTM5, LCP1, HCLS1, CORO1A, CD48, TYROBP, RAC2, ARHGDIB, FERMT3 and NCF4 were identified from the PPI network. A total of 122 miRNAs were identified to target these hub genes and 30 of them regulated two or more hub genes at the same time. Finally, 49 drugs, such as Gentamicins, acetamide, Isotretinoin, Nimesulide, Oxyquinoline, Quercetin and Resveratrol were identified to target these hub genes.Conclusions: In this study, the potential genes associated with Chronic chagasic cardiomyopathy are identified and a miRNA-mRNA regulatory network is constructed. This study explores the molecular mechanisms of Chronic chagasic cardiomyopathy and provides important clues for finding new therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Ma ◽  
Huan Gui ◽  
Yunjia Tang ◽  
Yueyue Ding ◽  
Guanghui Qian ◽  
...  

Kawasaki disease (KD) causes acute systemic vasculitis and has unknown etiology. Since the acute stage of KD is the most relevant, the aim of the present study was to identify hub genes in acute KD by bioinformatics analysis. We also aimed at constructing microRNA (miRNA)–messenger RNA (mRNA) regulatory networks associated with acute KD based on previously identified differentially expressed miRNAs (DE-miRNAs). DE-mRNAs in acute KD patients were screened using the mRNA expression profile data of GSE18606 from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DE-mRNAs were performed with the DAVID database. Target genes of DE-miRNAs were predicted using the miRWalk database and their intersection with DE-mRNAs was obtained. From a protein–protein interaction (PPI) network established by the STRING database, Cytoscape software identified hub genes with the two topological analysis methods maximal clique centrality and Degree algorithm to construct a miRNA-hub gene network. A total of 1,063 DE-mRNAs were identified between acute KD and healthy individuals, 472 upregulated and 591 downregulated. The constructed PPI network with these DE-mRNAs identified 38 hub genes mostly enriched in pathways related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, osteoclast differentiation, adipocytokine signaling pathway and tumor necrosis factor signaling pathway. Target genes were predicted for the up-regulated and down-regulated DE-miRNAs, 10,203, and 5,310, respectively. Subsequently, 355, and 130 overlapping target DE-mRNAs were obtained for upregulated and downregulated DE-miRNAs, respectively. PPI networks with these target DE-mRNAs produced 15 hub genes, six down-regulated and nine upregulated hub genes. Among these, ten genes (ATM, MDC1, CD59, CD177, TRPM2, FCAR, TSPAN14, LILRB2, SIRPA, and STAT3) were identified as hub genes in the PPI network of DE-mRNAs. Finally, we constructed the regulatory network of DE-miRNAs and hub genes, which suggested potential modulation of most hub genes by hsa-miR-4443 and hsa-miR-6510-5p. SP1 was predicted to potentially regulate most of DE-miRNAs. In conclusion, several hub genes are associated with acute KD. An miRNA–mRNA regulatory network potentially relevant for acute KD pathogenesis provides new insights into the underlying molecular mechanisms of acute KD. The latter may contribute to the diagnosis and treatment of acute KD.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zongfu Pan ◽  
Lu Li ◽  
Qilu Fang ◽  
Yangyang Qian ◽  
Yiwen Zhang ◽  
...  

Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and rapidly lethal tumors. However, limited advances have been made to prolong the survival and to reduce the mortality over the last decades. Therefore, identifying the master regulators underlying ATC progression is desperately needed. In our present study, three datasets including GSE33630, GSE29265, and GSE65144 were retrieved from Gene Expression Omnibus with a total of 32 ATC samples and 78 normal thyroid tissues. A total of 1804 consistently changed differentially expressed genes (DEGs) were identified from three datasets. KEGG pathways enrichment suggested that upregulated DEGs were mainly enriched in ECM-receptor interaction, cell cycle, PI3K-Akt signaling pathway, focal adhesion, and p53 signaling pathway. Furthermore, key gene modules in PPI network were identified by Cytoscape plugin MCODE and they were mainly associated with DNA replication, cell cycle process, collagen fibril organization, and regulation of leukocyte migration. Additionally, TOP2A, CDK1, CCNB1, VEGFA, BIRC5, MAPK1, CCNA2, MAD2L1, CDC20, and BUB1 were identified as hub genes of the PPI network. Interestingly, module analysis showed that 8 out of 10 hub genes participated in Module 1 network and more than 70% genes of Module 2 consisted of collagen family members. Notably, transcription factors (TFs) regulatory network analysis indicated that E2F7, FOXM1, and NFYB were master regulators of Module 1, while CREB3L1 was the master regulator of Module 2. Experimental validation showed that CREB3L1, E2F7, and FOXM1 were significantly upregulated in ATC tissue and cell line when compared with normal thyroid group. In conclusion, the TFs regulatory network provided a more detail molecular mechanism underlying ATC occurrence and progression. TFs including E2F7, FOXM1, CREB3L1, and NFYB were likely to be master regulators of ATC progression, suggesting their potential role as molecular therapeutic targets in ATC treatment.


2021 ◽  
Author(s):  
Yujia Liu ◽  
Xiaoping Hu ◽  
Zongfu Pan ◽  
Yuchen Jiang ◽  
Dandan Guo ◽  
...  

Abstract Background: Gastric cancer is one of the most common fatal disease worldwide, but its mechanism and therapeutic targets are still unclear. In this study, we have analyzed the differences in gene modules and key pathways in gastric cancer patients, then elaborated the mechanism and effective treatment of gastric cancer with microarray data from the gene expression omnibus(GEO) database. Methods: GEO2R tools were used to identify differential expression genes (DEGs), String database was employed to construct a protein-protein interaction (PPI) network. We imported the PPI network into the Cytoscape software to find key nodes, and employed statistical approach of MCODE to cluster genes. After that the ClueGO was used to enrich and annotate the pathways of key modules. To investigate the relationship between the upstream regulator and hub genes, the transcriptional regulatory network was built based on TFCAT database. Results: 63 characteristic genes of gastric cancer are involved in regulation of ECM-receptor interaction, focal adhesion and protein digestion and absorption. SPARC, FN1, BGN and COL1A2 are four key nodes relating to tumor proliferation and metastasis, and their expression were strongly associated with poor survival (p<0.05). 13 transcription factors including PRRX1 have remarkable changes in gastric cancer, which may play a key role in hub gene regulation. Conclusions: The present study defined the gene expression characteristics and transcriptional regulatory network that promote our understanding of the molecular mechanisms underlying the development of gastric cancer, and might provide new insights into targeted therapy and prognostic markers for the personalized treatment of gastric cancer.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractSporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. Pathway and GO enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the IntAct Molecular Interaction Database and visualized with Cytoscape software. In addition, hub genes and important modules were selected based on the network. Finally, we constructed target genes - miRNA regulatory network and target genes - TF regulatory network. Hub genes were validated. A total of 891 DEGs 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated were obtained. Pathway enrichment analysis indicated that up regulated genes were mainly linked with glutamine degradation/glutamate biosynthesis, while the down regulated genes were involved in melatonin degradation. GO enrichment analyses indicated that up regulated genes were mainly linked with chemical synaptic transmission, while the down regulated genes were involved in regulation of immune system process. hub and target genes were selected from the PPI network, modules, and target genes - miRNA regulatory network and target genes - TF regulatory network namely YWHAZ, GABARAPL1, EZR, CEBPA, HSPB8, TUBB2A and CDK14. The current study sheds light on the molecular mechanisms of sCJD and may provide molecular targets and diagnostic biomarkers for sCJD.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Heart failure (HF) is a complex cardiovascular diseases associated with high mortality. To discover key molecular changes in HF, we analyzed next-generation sequencing (NGS) data of HF. In this investigation, differentially expressed genes (DEGs) were analyzed using limma in R package from GSE161472 of the Gene Expression Omnibus (GEO). Then, gene enrichment analysis, protein-protein interaction (PPI) network, miRNA-hub gene regulatory network and TF-hub gene regulatory network construction, and topological analysis were performed on the DEGs by the Gene Ontology (GO), REACTOME pathway, STRING, HiPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, we performed receiver operating characteristic curve (ROC) analysis of hub genes. A total of 930 DEGs 9464 up regulated genes and 466 down regulated genes) were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections and the citric acid (TCA) cycle and respiratory electron transport. Subsequently, the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed, and 10 hub genes in these network were focused on by centrality analysis and module analysis. Furthermore, data showed that HSP90AA1, ARRB2, MYH9, HSP90AB1, FLNA, EGFR, PIK3R1, CUL4A, YEATS4 and KAT2B were good diagnostic values. In summary, this study suggests that HSP90AA1, ARRB2, MYH9, HSP90AB1, FLNA, EGFR, PIK3R1, CUL4A, YEATS4 and KAT2B may act as the key genes in HF.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Non alcoholic fatty liver disease (NAFLD) is the most common metabolic disease in humans, affecting the majority of individuals. In the current investigation, we aim to identify potential key genes linked with NAFLD through bioinformatics analyses of next generation sequencing (NGS) dataset. NGS dataset of GSE135251 from the Gene Expression Omnibus (GEO) database were retrieved. Differentially expressed genes (DEGs) were obtained by DESeq2 package. g:Profiler database was further used to identify the potential gene ontology (GO) and REACTOME pathways. Protein-protein interaction (PPI) network was constructed using the Hippie interactome database. miRNet and NetworkAnalyst databases were used to establish a miRNA-hub gene regulatory network and TF-hub gene regulatory network for the hub genes. Hub genes were verified based on receiver operating characteristic curve (ROC) analysis. Totally, 951 DEGs were identified including 476 up regulated genes and 475 down regulated genes screened in NAFLD and normal control. GO showed that DEGs were significantly enhanced for signaling and regulation of biological quality. REACTOME pathway analysis revealed that DEGs were enriched in signaling by interleukins and extracellular matrix organization. ESR2, JUN, PTN, PTGER3, CEBPB, IKBKG, HSPA8, SFN, CDKN1A and E2F1 were indicated as hub genes from PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Furthermore, ROC analysis revealed that ESR2, JUN, PTN, PTGER3, CEBPB, IKBKG, HSPA8, SFN, CDKN1A and E2F1 might serve as diagnostic biomarkers in NAFLD. The current investigation provided insights into the molecular mechanism of NAFLD that might be useful in further investigations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiahuan Luo ◽  
Li Zhu ◽  
Ning Zhou ◽  
Yuanyuan Zhang ◽  
Lirong Zhang ◽  
...  

Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF.Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF.Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF.Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.


2020 ◽  
Author(s):  
Yuanxiang Lu ◽  
Wensen Li ◽  
Ge Liu ◽  
Erwei Xiao ◽  
Senmao Mu ◽  
...  

Abstract Background: Duodenal papilla carcinoma (DPC) is a rare malignancy of the gastrointestinal tract with high recurrence rate, and the pathogenesis of this highly malignant neoplasm is yet to be fully elucidated. This study aims to identify key genes to further understand the biology and pathogenesis underlying the molecular alterations driving DPC, which could be potential diagnostic or therapeutic targets.Methods: Tumor samples of three DPC patients were collected and integrating RNA-seq analysis of tumor tissues and matched normal tissues were performed to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out to understand the potential bio-functions of the DPC differentially expressed genes (DEGs) and protein–protein interaction (PPI) network was constructed for functional modules analysis and dentification of hub genes. Results: A total of 110 DEGs were identified from our RNA-Seq data, GO and KEGG analyses showed that the DEGs were mainly enriched in multiple cancer-related functions and pathways, such as cell proliferation, IL-17signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway. The PPI network screened out six hub genes including IL-6, LEP, LCN2, CCND1, FABP4 and MMP1, which were identified as core genes in the network and potential therapeutic targets of DPC. Discussion: The current study provides new insight into the exploration of DPC pathogenesis and the screened hub genes may serve as potential diagnostic indicator and novel therapeutic target.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were then performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis and RT-PCR confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.


Sign in / Sign up

Export Citation Format

Share Document