scholarly journals Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoyu Yang ◽  
Hongting Tang ◽  
Meihui Song ◽  
Yu Shen ◽  
Jin Hou ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 728 ◽  
Author(s):  
Mateja Lozančić ◽  
Amir Sk. Hossain ◽  
Vladimir Mrša ◽  
Renata Teparić

Enzyme immobilization to solid matrices often presents a challenge due to protein conformation sensitivity, desired enzyme purity, and requirements for the particular carrier properties and immobilization technique. Surface display of enzymes at the cell walls of microorganisms presents an alternative that has been the focus of many research groups worldwide in different fields, such as biotechnology, energetics, pharmacology, medicine, and food technology. The range of systems by which a heterologous protein can be displayed at the cell surface allows the appropriate one to be found for almost every case. However, the efficiency of display systems is still quite low. The most frequently used yeast for the surface display of proteins is Saccharomyces cerevisiae. However, apart from its many advantages, Saccharomyces cerevisiae has some disadvantages, such as low robustness in industrial applications, hyperglycosylation of some heterologous proteins, and relatively low efficiency of surface display. Thus, in the recent years the display systems for alternative yeast hosts with better performances including Pichia pastoris, Hansenula polymorpha, Blastobotrys adeninivorans, Yarrowia lipolytica, Kluyveromyces marxianus, and others have been developed. Different strategies of surface display aimed to increase the amount of displayed protein, including new anchoring systems and new yeast hosts are reviewed in this paper.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


2019 ◽  
Vol 21 (7) ◽  
pp. 1795-1808 ◽  
Author(s):  
Gregory Guirimand ◽  
Kentaro Inokuma ◽  
Takahiro Bamba ◽  
Mami Matsuda ◽  
Kenta Morita ◽  
...  

Xylitol is a major commodity chemical widely used in both the food and pharmaceutical industries.


2007 ◽  
Vol 29 (10) ◽  
pp. 1561-1566 ◽  
Author(s):  
Qingjie Wang ◽  
Lei Li ◽  
Min Chen ◽  
Qingsheng Qi ◽  
Peng George Wang

2002 ◽  
Vol 68 (6) ◽  
pp. 2917-2923 ◽  
Author(s):  
Eric Bernasconi ◽  
Jacques-Edouard Germond ◽  
Michèle Delley ◽  
Rodolphe Fritsché ◽  
Blaise Corthésy

ABSTRACT Lactic acid bacteria have a good potential as agents for the delivery of heterologous proteins to the gastrointestinal mucosa and thus for the reequilibration of inappropriate immune responses to food antigens. Bovine β-lactoglobulin (BLG) is considered a major allergen in cow's milk allergy. We have designed recombinant Lactococcus lactis expressing either full-length BLG or BLG-derived octapeptide T6 (IDALNENK) as fusions with Lactobacillus bulgaricus extracellular proteinase (PrtB). In addition to constructs encoding full-length PrtB for the targeting of heterologous proteins to the cell surface, we generated vectors aiming at the release into the medium of truncated PrtB derivatives lacking 100 (PrtB∂, PrtB∂-BLG, and PrtB∂-T6) or 807 (PrtBΔ) C-terminal amino acids. Expression of recombinant products was confirmed using either anti-PrtB, anti-BLG, or anti-peptide T6 antiserum. All forms of the full-length and truncated recombinant products were efficiently translocated, irrespective of the presence of eucaryotic BLG sequences in the fusion proteins. L. lactis expressing PrtB∂-BLG yielded up to 170 μg per 109 CFU in the culture supernatant and 9 μg per 109 CFU at the bacterial cell surface within 14 h. Therefore, protein fusions relying on the use of PrtB gene products are adequate for concomitant cell surface display and secretion by recombinant L. lactis and thus may ensure maximal bioavailability of the eucaryotic antigen in the gut-associated lymphoid tissue.


2000 ◽  
Vol 182 (13) ◽  
pp. 3726-3733 ◽  
Author(s):  
Claus T. Lattemann ◽  
Jochen Maurer ◽  
Elke Gerland ◽  
Thomas F. Meyer

ABSTRACT Members of the protein family of immunoglobulin A1 protease-like autotransporters comprise multidomain precursors consisting of a C-terminal autotransporter domain that promotes the translocation of N-terminally attached passenger domains across the cell envelopes of gram-negative bacteria. Several autotransporter domains have recently been shown to efficiently promote the export of heterologous passenger domains, opening up an effective tool for surface display of heterologous proteins. Here we report on the autotransporter domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I), which was genetically fused to the C terminus of the periplasmic enzyme β-lactamase, leading to efficient expression of the fusion protein in E. coli. The β-lactamase moiety of the fusion protein was presented on the bacterial surface in a stable manner, and the surface-located β-lactamase was shown to be enzymatically active. Enzymatic activity was completely removed by protease treatment, indicating that surface display of β-lactamase was almost quantitative. The periplasmic domain of the outer membrane protein OmpA was not affected by externally added proteases, demonstrating that the outer membranes of E. coli cells expressing the β-lactamase AIDA-I fusion protein remained physiologically intact.


2006 ◽  
Vol 72 (11) ◽  
pp. 7140-7147 ◽  
Author(s):  
Frank Breinig ◽  
Björn Diehl ◽  
Sabrina Rau ◽  
Christian Zimmer ◽  
Helmut Schwab ◽  
...  

ABSTRACT Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.


Sign in / Sign up

Export Citation Format

Share Document