scholarly journals LOXL1-AS1 contributes to the proliferation and migration of laryngocarcinoma cells through miR-589-5p/TRAF6 axis

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guijun He ◽  
Wenfeng Yao ◽  
Liang Li ◽  
Yang Wu ◽  
Guojian Feng ◽  
...  

Abstract Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.

Author(s):  
Qinhua Liu ◽  
Ruonan Ran ◽  
Zhengsheng Wu ◽  
Xiaodan Li ◽  
Qingshu Zeng ◽  
...  

The present study was directed toward laying new findings for Extranodal natural killer/T-cell lymphoma (ENKL)-oriented therapy with a focus on long non-coding RNA (lncRNA)–microRNAs (miRNAs)–mRNA interaction. The expression and function of XIST (X-inactive specific transcript) were analyzed both in vivo and in vitro. The online database of lncRNA-miRNA interaction was used to screen the target of XIST, and miR-497 was selected. Next, the predicted binding between XIST and miR-497, and the dynamic effect of XIST and miR-497 on downstream Bcl-w was evaluated. We found that XIST dramatically increased in the blood of ENKL patients and cell lines. XIST knockdown suppressed the cell proliferation and migration in vivo and in vitro. Herein, we confirmed the negative interaction between XIST and miR-497. Moreover, XIST knockdown reduced the protein levels of Bcl-w, a downstream target of miR-497. XIST sponges miR-497 to promote Bcl-w expression, and finally modulating ENKL cell proliferation and migration. To be interested, inhibition of Bcl-w by ABT737 can overcome the high expression of XIST, and suppressed the ENKL proliferation and migration by inducing apoptosis. This study provided a novel experimental basis for ENKL-oriented therapy with a focus on the lncRNA–miRNA–mRNA interaction.


2020 ◽  
Author(s):  
Guan-Bin Qi ◽  
Lei Li

Abstract Background: LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in multiple cancers. However, its specific role in non-small cell lung cancer (NSCLC) remains unclear.Methods: The expression of LINC00958 was determined by RT-qPCR analysis. Cell proliferation and migration were evaluated by CCK-8 and transwell assays, respectively. Xenograft tumor models were established to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A.Results: We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Mechanically, we revealed that LINC00958 influenced NSCLC progression partly by sponging miR-204-3p and regulating KIF2A expression.Conclusions: Our study provided new insights into the role of LINC00958 as a promising prognostic biomarker and a therapeutic target for NSCLC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2020 ◽  
Author(s):  
Ni Wang ◽  
Yang Yu ◽  
Boming Xu ◽  
Chunmei Zhang ◽  
Jie Liu ◽  
...  

Abstract Background: Recently, long non-coding RNAs (lncRNAs) have been verified to have significant regulatory roles in multiple human cancer processes. Long non-coding RNA LINC00152, located on chromosome 2p11.2, was identified as an oncogenic lncRNA in various cancers. However, the biological function and molecular mechanism of LINC00152 in cholangiocarcinoma (CCA) are still unknown.Methods: Bioinformatic analysis was performed to determine LINC00152 expression levels in the CCA and normal tissues by using raw microarray data downloaded from Gene Expression Omnibus (GSE76297) and The Cancer Genome Atlas (TCGA). Quantitative reverse transcription PCR (qRT-PCR) was used to validate LINC00152 expression in the CCA tissues compared with that in the paired normal tissues. CCK8, colony formation, Edu assays, transwell assays, flow cytometry, and in vivo tumor formation assays were performed to investigate the biological function of LINC00152 on CCA cell phenotypes. RNA-seq was carried out to identify the downstream target gene which was further examined by qRT-PCR, western bolt and rescue experiments. RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays were performed to reveal the factors involved in the mechanism of LINC00152 functions in CCA.Results: LINC00152 is significantly upregulated in cholangiocarcinoma. LINC00152 regulated the proliferation and migration of cholangiocarcinoma cells both in vitro and in vivo. RNA-seq revealed that LINC00152 knockdown preferentially affected genes linked with cell proliferation, cell differentiation and cell adhesion. Furthermore, mechanistic investigation validated that LINC00152 could bind EZH2 and modulate the histone methylation of promoter of leucine rich repeats and immunoglobulin like domains 1 (LRIG1), thereby affecting cholangiocarcinoma cells growth and migration.Conclusion: Taken together, these results demonstrated the significant roles of LINC00152 in cholangiocarcinoma and suggested a new diagnostic and therapeutic direction of cholangiocarcinoma.


Author(s):  
Xiaohua Li ◽  
Chenyu Guo ◽  
Yong Chen ◽  
Feifei Yu

Long non-coding RNAs (lncRNAs) were reported that related to microvascular dysfunction in diabetic retinopathy (DR), but the potential mechanism remains unknown. This study was designed to elucidate the effects of lncRNA SNHG16 in proliferative DR progression. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the levels of SNHG16 and miR-20a-5p from peripheral blood samples of different participants. Pearson’s correlation analysis on the plasma data was applied to detect correlations between SNHG16 and miR-20a-5p. Finally, the interactions of miR-20a-5p and SNHG16 or E2F1 were assessed by luciferase reporter assays. SNHG16 and E2F1 were increased and miR-20a-5p was decreased in proliferative DR both in vivo and in vitro, when compared with control or non-proliferative DR. E2F1 was identified as the target of miR-20a-5p. MiR-20a-5p interacted with SNHG16 and E2F1, and was controlled by SNHG16. The regulation of SNHG16 on E2F1 was mediated by miR-20a-5p. Cells transfected with SNHG16 OE plasmid markedly increased cell apoptosis and vessel-like formation, whereas the miR-20a-5p mimic partially reversed these effects. Transfection with si-E2F1 plasmid rescued SNHG16 overexpression-aggravated proliferative DR. This study indicated that SNHG16 regulated E2F1 expression by sponging miR-20a-5p and aggravating proliferative DR.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Vol 20 (4) ◽  
pp. 288-294 ◽  
Author(s):  
Xinyu Tan ◽  
Duxun Tan ◽  
Haomiao Li ◽  
Ye Lin ◽  
Zhishen Wen ◽  
...  

Background: Recent studies have reported the vital roles of circular RNAs (circRNAs) in tumor progression. However, the function and expression profile of most circRNAs in osteosarcoma remain unclear. Methods: We examined the expression of circEPSTI1, a circRNA, in 50 paired adjacent normal tissues and osteosarcoma tissues by qRT-PCR. Then, we further explored the function of circEPSTI1 in osteosarcoma progression in vitro and in vivo. For example, cell proliferation and migration were examined. Some experiments were performed to explore the regulatory function of circEPSTI1 in miRNA and to investigate the potential role of circEPSTI1 in osteosarcoma. Results: We found that circEPSTI1 was significantly upregulated in osteosarcoma. Inhibition of circEPSTI1 suppressed the osteosarcoma cancer cell proliferation and migration in vitro. Dual luciferase reporter assay showed that circEPSTI1 and MCL1 (myeloid cell leukaemia 1) could bind to miR-892b and that MCL1 and circEPSTI1 were targets of miR-892b. Conclusion: Thus, the circEPSTI1-miR-892b-MCL1 axis affected osteosarcoma progression through the miRNA sponging mechanism. circEPSTI1 may serve as a target and biomarker for osteosarcoma treatment.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Sign in / Sign up

Export Citation Format

Share Document