scholarly journals Combining dual-tree complex wavelets and multiresolution in iterative CT reconstruction with application to metal artifact reduction

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Defne Us ◽  
Ulla Ruotsalainen ◽  
Sampsa Pursiainen

Abstract Background This paper investigates the benefits of data filtering via complex dual wavelet transform for metal artifact reduction (MAR). The advantage of using complex dual wavelet basis for MAR was studied on simulated dental computed tomography (CT) data for its efficiency in terms of noise suppression and removal of secondary artifacts. Dual-tree complex wavelet transform (DT-CWT) was selected due to its enhanced directional analysis of image details compared to the ordinary wavelet transform. DT-CWT was used for multiresolution decomposition within a modified total variation (TV) regularized inversion algorithm. Methods In this study, we have tested the multiresolution TV (MRTV) approach with DT-CWT on a 2D polychromatic jaw phantom model with Gaussian and Poisson noise. High noise and sparse measurement settings were used to assess the performance of DT-CWT. The results were compared to the outcome of the single-resolution reconstruction and filtered back-projection (FBP) techniques as well as reconstructions with Haar wavelet basis. Results The results indicate that filtering of wavelet coefficients with DT-CWT effectively removes the noise without introducing new artifacts after inpainting. Furthermore, adoption of multiple resolution levels yield to a more robust algorithm compared to varying the regularization strength. Conclusions The multiresolution reconstruction with DT-CWT is also more robust when reconstructing the data with sparse projections compared to the single-resolution approach and Haar wavelets.

2019 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Sungsoo Ha ◽  
Klaus Mueller

In computed tomography (CT), metal implants increase the inconsistencies between the measured data and the linear assumption of the Radon transform made by the analytic CT reconstruction algorithm. The inconsistencies appear in the form of dark and bright bands and streaks in the reconstructed image, collectively called metal artifacts. The standard method for metal artifact reduction (MAR) replaces the inconsistent data with interpolated data. However, sinogram interpolation not only introduces new artifacts but it also suffers from the loss of detail near the implanted metals. With the help of a prior image that is usually estimated from the metal artifact-degraded image via computer vision techniques, improvements are feasible but still no MAR method exists that is widely accepted and utilized. We propose a technique that utilizes a prior image from a CT scan taken of the patient before implanting the metal objects. Hence, there is a sufficient amount of structural similarity to cover the loss of detail around the metal implants. Using the prior scan and a segmentation or model of the metal implant, our method then replaces sinogram interpolation with ray profile matching and estimation, which yields much more reliable data estimates for the affected sinogram regions. Experiments with clinical dataset obtained using surgical imaging CT scanner show very promising results.


2018 ◽  
Author(s):  
Benedikt Schwaiger ◽  
Alexandra Gersing ◽  
Daniela Muenzel ◽  
Julia Dangelmaier ◽  
Peter Prodinger ◽  
...  

2021 ◽  
pp. 028418512110290
Author(s):  
Georg Osterhoff ◽  
Florian A Huber ◽  
Laura C Graf ◽  
Ferdinand Erdlen ◽  
Hans-Christoph Pape ◽  
...  

Background Carbon-reinforced PEEK (C-FRP) implants are non-magnetic and have increasingly been used for the fixation of spinal instabilities. Purpose To compare the effect of different metal artifact reduction (MAR) techniques in magnetic resonance imaging (MRI) on titanium and C-FRP spinal implants. Material and Methods Rod-pedicle screw constructs were mounted on ovine cadaver spine specimens and instrumented with either eight titanium pedicle screws or pedicle screws made of C-FRP and marked with an ultrathin titanium shell. MR scans were performed of each configuration on a 3-T scanner. MR sequences included transaxial conventional T1-weighted turbo spin echo (TSE) sequences, T2-weighted TSE, and short-tau inversion recovery (STIR) sequences and two different MAR-techniques: high-bandwidth (HB) and view-angle-tilting (VAT) with slice encoding for metal artifact correction (SEMAC). Metal artifact degree was assessed by qualitative and quantitative measures. Results There was a much stronger effect on artifact reduction with using C-FRP implants compared to using specific MRI MAR-techniques (screw shank: P < 0.001; screw tulip: P < 0.001; rod: P < 0.001). VAT-SEMAC sequences were able to reduce screw-related signal loss artifacts in constructs with titanium screws to a certain degree. Constructs with C-FRP screws showed less artifact-related implant diameter amplification when compared to constructs with titanium screws ( P < 0.001). Conclusion Constructs with C-FRP screws are associated with significantly less artifacts compared to constructs with titanium screws including dedicated MAR techniques. Artifact-reducing sequences are able to reduce implant-related artifacts. This effect is stronger in constructs with titanium screws than in constructs with C-FRP screws.


2021 ◽  
Vol 24 ◽  
pp. 100573
Author(s):  
Goli Khaleghi ◽  
Mohammad Hosntalab ◽  
Mahdi Sadeghi ◽  
Reza Reiazi ◽  
Seied Rabi Mahdavi

Sign in / Sign up

Export Citation Format

Share Document