scholarly journals LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yaomei He ◽  
Xiulin Jiang ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
Yixiao Yuan ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is the most common type of human lung cancers, which has diverse pathological features. Although many signaling pathways and therapeutic targets have been defined to play important roles in NSCLC, limiting efficacies have been achieved. Methods Bioinformatics methods were used to identify differential long non-coding RNA expression in NSCLC. Real-time RT-PCR experiments were used to examine the expression pattern of lncRNA PKMYT1AR, miR-485-5p. Both in vitro and in vivo functional assays were performed to investigate the functional role of PKMYT1AR/miR-485-5p/PKMYT1 axis on regulating cell proliferation, migration and tumor growth. Dual luciferase reporter assay, fluorescent in situ hybridization (FISH), immunoblot, co-immunoprecipitation experiments were used to verify the molecular mechanism. Result Here, we identify a human-specific long non-coding RNA (lncRNA, ENST00000595422), termed PKMYT1AR (PKMYT1 associated lncRNA), that is induced in NSCLC by Yin Yang 1 (YY1) factor, especially in cancerous cell lines (H358, H1975, H1299, H1650, A549 and SPC-A1) compared to that in normal human bronchial epithelium cell line (BEAS-2B). We show that PKMYT1AR high expression correlates with worse clinical outcome, and knockdown of PKMYT1AR inhibits tumor cell proliferation, migration and xenograft tumor formation abilities. Bioinformatic analysis and a luciferase assay demonstrate that PKMYT1AR directly interacts with miR-485-5p to attenuate the inhibitory role on its downstream oncogenic factor PKMYT1 (the protein kinase, membrane-associated tyrosine/threonine 1) in NSCLC. Furthermore, we uncover that miR-485-5p is downregulated in both cancerous cell lines and peripheral blood serum isolated from NSCLC patients compared to reciprocal control groups. Consistently, forced expression of miR-485-5p inhibits the proliferation and migration abilities of tumor cells. Moreover, we provide evidence showing that PKMYT1AR targeting antisense oligonucleotide (ASO) dramatically inhibit tumor growth in vivo. Mechanistic study shows that PKMYT1AR/ miR-485-5p /PKMYT1 axis promotes cancer stem cells (CSCs) maintenance in NSCLC via inhibiting β-TrCP1 mediated ubiquitin degradation of β-catenin proteins, which in turn causes enhanced tumorigenesis. Conclusions Our findings reveal the critical role of PKMYT1AR/miR-485-5p /PKMYT1 axis during NSCLC progression, which could be used as novel therapeutic targets in the future.

2018 ◽  
Vol 51 (5) ◽  
pp. 2136-2147 ◽  
Author(s):  
Haiting Gu ◽  
Junfeng Chen ◽  
Yukang Song ◽  
Haiyan Shao

Background/Aims: Long non-coding RNAs (lncRNAs) play vital roles in carcinogenesis as oncogenes or tumor suppressor genes. This study explored the biological function of lncRNA gastric adenocarcinoma predictive long intergenic non-coding RNA (GAPLINC) in human non-small cell lung cancer (NSCLC). Methods: GAPLINC expression in NSCLC specimens and cell lines was detected by qRT-PCR and Western blot. The effect of GAPLINC on cell proliferation was investigated using CCK8-assay, colony formation assay, and xenograft model. The effects of GAPLINC on apoptosis and cell cycle were determined using flow cytometry. The mechanism of GAPLINC involved in NSCLC was explored using Western blot, luciferase reporter assay, and RNA fluorescence in situ hybridization. Results: We found that GAPLINC expression was up-regulated in NSCLC tissues and cell lines. Overexpression of GAPLINC was associated with poor prognosis in patients with NSCLC. Silencing of GAPLINC significantly inhibited cell proliferation, promoted apoptosis, and induced cell cycle arrest in the G0/G1 phase. Results from xenograft transplantation showed that GAPLINC silencing inhibited the tumor growth in vivo. Interestingly, GAPLINC silencing decreased the expression of eukaryotic elongation factor-2 kinase (eEF2K) protein both in vivo and in vitro. Bioinformatic analysis and luciferase reporter confirmed that miR-661 targeted GAPLINC and eEF2K 3’-UTR and was negatively correlated with the expression of GAPLINC and eEF2K. Conclusion: Our findings indicate that GAPLINC promotes NSCLC tumorigenesis by regulating miR-661/eEF2K cascade and provide new insights for the pathogenesis underlying NSCLC and potential targets for therapeutic strategy.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Yafeng Fan ◽  
Hongxia Li ◽  
Zhongping Yu ◽  
Wen Dong ◽  
Xiaoyan Cui ◽  
...  

Abstract Long non-coding RNA (lncRNA) FYVE, RhoGEF and PH domain containing 5 antisense RNA 1 (FGD5-AS1) has been reported as an oncogene in colorectal cancer, promoting its tumorgenesis. The present paper focused on searching the potential function of FGD5-AS1 in non-small cell lung carcinoma (NSCLC). There are connections between the expression of lncRNA FGD5-AS1 and human NSCLC tumor growth and progression. Also, the relationships between FGD5-AS1, hsa-miR-107 and mRNA fibroblast growth factor receptor like 1 (FGFRL1) are going to test their interaction in NSCLC cell lines, which may cause a series of biological behaviors of NSCLC cells. qRT-PCR analysis was conducted to test the expression of RNAs in different situation. CCK-8 experiment and clone formation assay were performed to assess proliferation of NSCLC cells. Also, connection between FGD5-AS1 and hsa-miR-107 were investigated by luciferase reporter assay and RNA pull-down assay. Rescue experiments were performed to verify the modulating relationship between FGD5-AS1, hsa-miR-107 and FGFRL1. High-level expression of FGD5-AS1 was found in NSCLC. FGD5-AS1 may promote the proliferation of NSCLC cells. Also, the combination between hsa-miR-107, FGD5-AS1 and NSCLC have been proved, which means they can play an interaction function in NSCLC cells. Thence, we concluded that lncRNA FGD5-AS1 promotes non-small cell lung cancer cell proliferation through sponging hsa-miR-107 to up-regulate FGFRL1.


2018 ◽  
Vol 9 (7) ◽  
pp. 761-768 ◽  
Author(s):  
Leirong Wang ◽  
Leina Ma ◽  
Fei Xu ◽  
Wenxin Zhai ◽  
Shenghua Dong ◽  
...  

2020 ◽  
pp. 153537022096101
Author(s):  
Lingling Pang ◽  
Qianqian Zhang ◽  
Yanmin Wu ◽  
Qingru Yang ◽  
Jinghao Zhang ◽  
...  

The long non-coding RNA colon cancer-associated transcript 1 (CCAT1) has been investigated to involve in the progression of non-small cell lung cancer (NSCLC). Thus, this study aims to explore the detailed molecular mechanisms of CCAT1 in NSCLC. The expression of CCAT1, miR-216a-5p, RAP2B, Bax, Bcl-2, and cleaved caspase 3 was detected by qRT-PCR or Western blot. Cell proliferation, apoptosis, migration, and invasion were analyzed using cell counting kit-8, flow cytometry or Transwell assays, respectively. The interaction between miR-216a-5p and CCAT1 or RAP2B was analyzed by luciferase reporter, RNA immunoprecipitation, and pull-down assays. The expression of CCAT1 was elevated in NSCLC, and CCAT1 deletion could inhibit NSCLC cell proliferation, migration, and invasion but induce apoptosis in vitro as well as imped tumor growth in vivo. MiR-216a-5p was confirmed to be a target of CCAT1, and silencing miR-216a-5p could reverse CCAT1 depletion-mediated inhibitory effects on cell tumorigenesis in NSCLC. Besides that, miR-216a-5p was decreased in NSCLC, and miR-216a-5p restoration inhibited cell tumorigenesis by regulating RAP2B, which was verified to be a target of miR-216a-5p. Additionally, co-expression analysis suggested that CCAT1 indirectly regulated RAP2B level by targeting miR-216a-5p in NSCLC cells. Taken together, CCAT1 deletion could inhibit cell progression in NSCLC through miR-216a-5p/RAP2B axis, indicating a novel pathway underlying NSCLC cell progression and providing new potential targets for NSCLC treatment. Impact statement We investigated that CCAT1 expression was elevated in NSCLC and CCAT1 deletion was identified to inhibit cell carcinogenic phenotypes in NSCLC cells via miR-216a-5p/RAP2B axis, which reveals a novel pathway underlying progression in NSCLC cells and providing potential targets for NSCLC treatment.


2020 ◽  
Author(s):  
Zhihong Zhang ◽  
Zhenxiu Shan ◽  
Rubin Chen ◽  
Xiaorong Peng ◽  
Bin Xu ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) is a leading threat to human lives with high incidence and mortality. Circular RNAs (circRNAs) were reported to play important roles in human cancers. The purpose of this study was to investigate the role of circ_0005962 and explore the underlying functional mechanisms. The expression of circ_0005962, miR-382-5p and pyruvate dehydrogenase kinase 4 (PDK4) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and cell apoptosis were assessed by cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The protein levels of Beclin 1, light chain3 (LC3-II/LC3-I), PDK4, Cleaved Caspase 3 (C-caspase 3) and proliferating cell nuclear antigen (PCNA) were examined using western blot analysis. Glycolysis was determined according to the levels of glucose consumption and lactate production. The interaction between miR-382-5p and circ_0005962 or PDK4 was predicted by the online tool CircInteractome or starbase and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft model was constructed to investigate the role of circ_0005962 in vivo. circ_0005962 expressed with a high level in NSCLC tissues and cells. Circ_0005962 knockdown inhibited proliferation, autophagy, and glycolysis but promoted apoptosis in NSCLC cells. MiR-382-5p was targeted by circ_0005962, and its inhibition reversed the role of circ_0005962 knockdown. Besides, PDK4, a target of miR-382-5p, was regulated by circ_0005962 through miR-382-5p, and its overexpression abolished the effects of miR-382-5p reintroduction. Circ_0005962 knockdown suppressed tumor growth in vivo. Circ_0005962 knockdown restrained cell proliferation, autophagy, and glycolysis but stimulated apoptosis through modulating the circ_0005962/miR-382-5p/PDK4 axis. Our study broadened the insights into understanding the mechanism of NSCLC progression.


RSC Advances ◽  
2019 ◽  
Vol 9 (65) ◽  
pp. 38200-38208
Author(s):  
Kui Li ◽  
Xiaodan Wang ◽  
Zhen Huang ◽  
Hui Xu ◽  
Songbai Zheng ◽  
...  

Non-small cell lung cancer (NSCLC) is a malignant lung cancer and accounts for 80% of lung cancer-related deaths.


Sign in / Sign up

Export Citation Format

Share Document