scholarly journals Diagnostic and prognostic significance of cardiovascular magnetic resonance native myocardial T1 mapping in patients with pulmonary hypertension

Author(s):  
Laura C. Saunders ◽  
Chris S. Johns ◽  
Neil J. Stewart ◽  
Charlotte J. E. Oram ◽  
David A. Capener ◽  
...  
2013 ◽  
Vol 6 (3) ◽  
pp. 392-398 ◽  
Author(s):  
Daniel M. Sado ◽  
Steven K. White ◽  
Stefan K. Piechnik ◽  
Sanjay M. Banypersad ◽  
Thomas Treibel ◽  
...  

Author(s):  
B. Domenech-Ximenos ◽  
M. Sanz-de la Garza ◽  
S. Prat-González ◽  
A. Sepúlveda-Martínez ◽  
F. Crispi ◽  
...  

Abstract Background Intensive endurance exercise may induce a broad spectrum of right ventricular (RV) adaptation/remodelling patterns. Late gadolinium enhancement (LGE) has also been described in cardiovascular magnetic resonance (CMR) of some endurance athletes and its clinical meaning remains controversial. Our aim was to characterize the features of contrast CMR and the observed patterns of the LGE distribution in a cohort of highly trained endurance athletes. Methods Ninety-three highly trained endurance athletes (> 12 h training/week at least during the last 5 years; 36 ± 6 years old; 53% male) and 72 age and gender-matched controls underwent a resting contrast CMR. In a subgroup of 28 athletes, T1 mapping was also performed. Results High endurance training load was associated with larger bi-ventricular and bi-atrial sizes and a slight reduction of biventricular ejection fraction, as compared to controls in both genders (p < 0.05). Focal LGE was significantly more prevalent in athletes than in healthy subjects (37.6% vs 2.8%; p < 0.001), with a typical pattern in the RV insertion points. In T1 mapping, those athletes who had focal LGE had higher extracellular volume (ECV) at the remote myocardium than those without (27 ± 2.2% vs 25.2 ± 2.1%; p < 0.05). Conclusions Highly trained endurance athletes showed a ten-fold increase in the prevalence of focal LGE as compared to control subjects, always confined to the hinge points. Additionally, those athletes with focal LGE demonstrated globally higher myocardial ECV values. This matrix remodelling and potential presence of myocardial fibrosis may be another feature of the athlete’s heart, of which the clinical and prognostic significance remains to be determined.


2020 ◽  
Vol 29 (156) ◽  
pp. 190138
Author(s):  
Sudeep R. Aryal ◽  
Oleg F. Sharifov ◽  
Steven G. Lloyd

Pulmonary hypertension (PH) is a clinical condition characterised by elevation of pulmonary arterial pressure (PAP) above normal range due to various aetiologies. While cardiac right-heart catheterisation (RHC) remains the gold standard and mandatory for establishing the diagnosis of PH, noninvasive imaging of the heart plays a central role in the diagnosis and management of all forms of PH. Although Doppler echocardiography (ECHO) can measure a range of haemodynamic and anatomical variables, it has limited utility for visualisation of the pulmonary artery and, oftentimes, the right ventricle. Cardiovascular magnetic resonance (CMR) provides comprehensive information about the anatomical and functional aspects of the pulmonary artery and right ventricle that are of prognostic significance for assessment of long-term outcomes in disease progression. CMR is suited for serial follow-up of patients with PH due to its noninvasive nature, high sensitivity to changes in anatomical and functional parameters, and high reproducibility. In recent years, there has been growing interest in the use of CMR derived parameters as surrogate endpoints for early-phase PH clinical trials. This review will discuss the role of CMR in the diagnosis and management of PH, including current applications and future developments, in comparison to other existing major imaging modalities.


Author(s):  
Tiago Teixeira ◽  
Tarik Hafyane ◽  
Nikola Stikov ◽  
Cansu Akdeniz ◽  
Andreas Greiser ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244282
Author(s):  
Nicola Galea ◽  
Edoardo Rosato ◽  
Antonietta Gigante ◽  
Cristian Borrazzo ◽  
Andrea Fiorelli ◽  
...  

Purpose Cardiac involvement in Systemic Sclerosis (SSc) is increasingly recognized as a mayor cause of morbidity and mortality. The aim of present study is to investigate the early stages of cardiac involvement in SSc by Cardiovascular magnetic resonance (CMR), combining the non-invasive detection of myocardial inflammation and fibrosis using T2 and T1 mapping techniques and the assessment of microcirculatory impairment through perfusion response to cold pressor test (CPT). Methods 40 SSc patients (30 females, mean age: 42.1 years) without cardiac symptoms and 10 controls underwent CMR at 1.5 T unit. CMR protocol included: native and contrast-enhanced T1 mapping, T2 mapping, T2-weighted, cineMR and late gadolinium enhancement (LGE) imaging. Microvascular function was evaluated by comparing myocardial blood flow (MBF) on perfusion imaging acquired at rest and after CPT. Native myocardial T1 and T2 relaxation times, extracellular volume fraction (ECV), T2 signal intensity ratio, biventricular volumes and LGE were assessed in each patient. Results SSc patients had significantly higher mean myocardial T1 (1029±32ms vs. 985±18ms, p<0.01), ECV (30.1±4.3% vs. 26.7±2.4%, p<0.05) and T2 (50.1±2.8ms vs. 47±1.5ms, p<0.01) values compared with controls. No significant differences were found between absolute MBF values at rest and after CPT; whereas lower MBF variation after CPT was observed in SSc patients (+33 ± 14% vs. +44 ± 12%, p<0.01). MBF variation had inverse correlation with native T1 values (r: -0.32, p<0.05), but not with ECV. Conclusions Myocardial involvement in SSc at preclinical stage increases native T1, T2 and ECV values, reflecting inflammation and fibrosis, and reduces vasodilatory response to CPT, as expression of microvascular dysfunction.


Sign in / Sign up

Export Citation Format

Share Document