scholarly journals Divanillyl sulfone suppresses NLRP3 inflammasome activation via inducing mitophagy to ameliorate chronic neuropathic pain in mice

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shuai Shao ◽  
Cheng-Bo Xu ◽  
Cheng-Juan Chen ◽  
Gao-Na Shi ◽  
Qing-Lan Guo ◽  
...  

Abstract Background Chronic neuropathic pain is a frequent sequel to peripheral nerve injury and maladaptive nervous system function. Divanillyl sulfone (DS), a novel structural derivative of 4,4′-dihydroxydibenzyl sulfoxide from a traditional Chinese medicine Gastrodia elata with anti-nociceptive effects, significantly alleviated neuropathic pain following intrathecal injection. Here, we aimed to investigate the underlying mechanisms of DS against neuropathic pain. Methods A chronic constrictive injury (CCI) mouse model of neuropathic pain induced by sciatic nerve ligation was performed to evaluate the effect of DS by measuring the limb withdrawal using Von Frey filament test. Immunofluorescence staining was used to assess the cell localizations and expressions of Iba-1, ASC, NLRP3, and ROS, the formation of autolysosome. The levels of NLRP3-related proteins (caspase-1, NLRP3, and IL-1β), mitophagy-related proteins (LC3, Beclin-1, and p62), and apoptosis-related proteins (Bcl-XL and Bax) were detected by Western blotting. The apoptosis of BV-2 cell and caspase activity were evaluated by flow cytometry. Results DS significantly alleviated the neuropathic pain by increasing the mechanical withdrawal threshold and inhibiting the activation of NLRP3 in CCI-induced model mice. Our findings indicated that DS promoted the mitophagy by increasing the LC3II and Beclin 1 and decreasing the levels of p62 protein in BV-2 cell. This is accompanied by the inhibition of NLRP3 activation, which was shown as inhibited the expression of NLRP3 in lysates as well as the secretion of mature caspase-1 p10 and IL-1β p17 in supernatants in cultured BV-2 microglia. In addition, DS could promote mitophagy-induced improvement of dysfunctional mitochondria by clearing intracellular ROS and restoring mitochondrial membrane potential. Conclusion Together, our findings demonstrated that DS ameliorate chronic neuropathic pain in mice by suppressing NLRP3 inflammasome activation induced by mitophagy in microglia. DS may be a promising therapeutic agent for chronic neuropathic pain.

2020 ◽  
Author(s):  
Shi-Jie Su ◽  
Wei-Wu Cai ◽  
Hao-Fei Liu ◽  
Shi-Jie Zhang ◽  
Qi Wang ◽  
...  

Abstract Background: Similar features indicated common regulators between aging and aging-induced dementia, which demonstrated profound correlations with each other. However, the mechanism remains unclear. Bushen-Yizhi Formula(BSYZ-F) has been used for managing dementia in the clinic for hundreds of years. In this study, we aimed to further explore the mechanism of athyl acetate extracts of BSYZ-F(BSYZ-E) attenuates aging-induced dementia in Senescence-Accelerated Mouse Prone 8 (SAMP8) mice.Methods: As an age-related model, SAMP8 mice have been assigned to receive the corresponding interventions in this study. The Morris water maze was used to evaluate the learning and memory ability in SAMP8 mice. The marker level of oxidative stress(ROS and SOD) and nitrosative stress(NO and iNOS) were measured using commercial kits. The quantification of inflammation-related proteins (NLRP3, ASC, Caspase-1, IL-1β, and IL-18) and related apoptotic proteins (Bax, Bcl-2, Caspase-3, and Cleaved-Caspase-3) in hippocampal tissue were measured using Western blot.Results: In behavioral, the Morris Water Maze test demonstrated BSYZ-E alleviated the cognitive impairments in SAMP8 mice. Mechanism studies indicated that BSYZ-E increased the vitality of SOD, declined the validity of NO, iNOS, and MDA in SAMP8 mice. Besides, BSYZ-E relieved neuronal apoptosis by regulating the expression of related apoptotic proteins (Bax, Bcl-2, Caspase-3, and Cleaved-Caspase-3) and inhibited NLRP3 inflammasome activation by inflammation-related proteins (NLRP3, ASC, Caspase-1, IL-1β, and IL-18) in SAMP8 mice. Conclusions: These results suggested that BSYZ-E attenuates aging-induced dementia by suppressing the activation of NLRP3 inflammasome in SAMP8 mice.


2019 ◽  
Vol 147 ◽  
pp. 104348 ◽  
Author(s):  
Jiasi Wu ◽  
Yu Luo ◽  
Qing Jiang ◽  
Sheng Li ◽  
Wenge Huang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


2021 ◽  
Vol 49 (08) ◽  
pp. 2001-2015
Author(s):  
Guixian Zhang ◽  
Liming Tang ◽  
Hongbin Liu ◽  
Dawei Liu ◽  
Manxue Wang ◽  
...  

Chronic pancreatitis (CP) is a multifactorial, inflammatory syndrome characterized by acinar atrophy and fibrosis. Activation of NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome is a central mediator of multiple chronic inflammatory responses and chronic fibrosis including pancreatic fibrosis in CP. The Psidium guajavaleaf is widely used in traditional medicine for the treatment of chronic inflammation, but the anti-inflammatory effect of Psidium guajavaleaf on CP has not yet been revealed. In this study, we investigated whether the extract of total flavonoids from Psidium guajava leaves (TFPGL) plays a therapeutic mechanism on CP through NLRP3 inflammasome signaling pathway in a mouse CP model. The H&E and acid-Sirius red staining indicted that TFPGL attenuated the inflammatory cell infiltration and fibrosis significantly. The results of immunohistological staining, western blot and RT-qPCR showed that the expressions of NLRP3 and caspase-1 were significantly increased in the CP model group, while TFPGL significantly decreased the NLRP3 and caspase-1 expression at both the gene and protein levels. Moreover, ELISA assay was used to examine the levels of NLRP3 inflammasome target genes, such as caspase-1, IL-1[Formula: see text] and IL-18. We found that TFPGL treatment decreased the expression of caspase-1, IL-1[Formula: see text] and IL-18, which is critical for the NLRP3 inflammasome signaling pathway and inflammation response significantly. These results demonstrated that TFPGL attenuated pancreatic inflammation and fibrosis via preventing NLRP3 inflammasome activation and TFPGL can be used as a potential therapeutic agent for CP.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Bin Leng ◽  
Yingjie Zhang ◽  
Xinran Liu ◽  
Zhen Zhang ◽  
Yang Liu ◽  
...  

Long-term exposure to high glucose induces vascular endothelial inflammation that can result in cardiovascular disease. Astragaloside IV (As-IV) is widely used for anti-inflammatory treatment of cardiovascular diseases. However, its mechanism of action is still not fully understood. In this study, we investigated the effect of As-IV on high glucose-induced endothelial inflammation and explored its possible mechanisms. In vivo, As-IV (40 and 80 mg/kg/d) was orally administered to rats for 8 weeks after a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg). In vitro, human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33 mM glucose) in the presence or absence of As-IV, NPS2143 (CaSR inhibitor), BAY 11-7082 (NF-κB p65 inhibitor), and INF39 (NLRP3 inhibitor), and overexpression of CaSR was induced by infection of CaSR-overexpressing lentiviral vectors to further discuss the anti-inflammatory property of As-IV. The results showed that high glucose increased the expression of interleukin-18 (IL-18), interleukin-1β (IL-1β), NLRP3, caspase-1, and ASC, as well as the protein level of TLR4, nucleus p65, and CaSR. As-IV can reverse these changes in vivo and in vitro. Meanwhile, NPS2143, BAY 11-7082, and INF39 could significantly abolish the high glucose-enhanced NLRP3, ASC, caspase-1, IL-18, and IL-1β expression in vitro. In addition, both NPS2143 and BAY 11-7082 attenuated high glucose-induced upregulation of NLRP3, ASC, caspase-1, IL-18, and IL-1β expression. In conclusion, this study suggested that As-IV could inhibit high glucose-induced NLRP3 inflammasome activation and subsequent secretion of proinflammatory cytokines via inhibiting TLR4/NF-κB signaling pathway and CaSR, which provides new insights into the anti-inflammatory activity of As-IV.


Rheumatology ◽  
2020 ◽  
Author(s):  
Di Liu ◽  
Yizhi Xiao ◽  
Bin Zhou ◽  
Siming Gao ◽  
Liya Li ◽  
...  

Abstract Objectives Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM. Methods Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated. Results Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis. Conclusion Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.


Sign in / Sign up

Export Citation Format

Share Document