scholarly journals Argonaute-2 protects the neurovascular unit from damage caused by systemic inflammation

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Marta Machado-Pereira ◽  
Cláudia Saraiva ◽  
Liliana Bernardino ◽  
Ana C. Cristóvão ◽  
Raquel Ferreira

Abstract Background The brain vasculature plays a pivotal role in the inflammatory process by modulating the interaction between blood cells and the neurovascular unit. Argonaute-2 (Ago2) has been suggested as essential for endothelial survival but its role in the brain vasculature or in the endothelial–glial crosstalk has not been addressed. Thus, our aim was to clarify the significance of Ago2 in the inflammatory responses elicited by these cell types. Methods Mouse primary cultures of brain endothelial cells, astrocytes and microglia were used to evaluate cellular responses to the modulation of Ago2. Exposure of microglia to endothelial cell-conditioned media was used to assess the potential for in vivo studies. Adult mice were injected intraperitoneally with lipopolysaccharide (LPS) (2 mg/kg) followed by three daily intraperitoneal injections of Ago2 (0.4 nM) to assess markers of endothelial disruption, glial reactivity and neuronal function. Results Herein, we demonstrated that LPS activation disturbed the integrity of adherens junctions and downregulated Ago2 in primary brain endothelial cells. Exogenous treatment recovered intracellular Ago2 above control levels and recuperated vascular endothelial-cadherin expression, while downregulating LPS-induced nitric oxide release. Primary astrocytes did not show a significant change in Ago2 levels or response to the modulation of the Ago2 system, although endogenous Ago2 was shown to be critical in the maintenance of tumor necrosis factor-α basal levels. LPS-activated primary microglia overexpressed Ago2, and Ago2 silencing contained the inflammatory response to some extent, preventing interleukin-6 and nitric oxide release. Moreover, the secretome of Ago2-modulated brain endothelial cells had a protective effect over microglia. The intraperitoneal injection of LPS impaired blood–brain barrier and neuronal function, while triggering inflammation, and the subsequent systemic administration of Ago2 reduced or normalized endothelial, glial and neuronal markers of LPS damage. This outcome likely resulted from the direct action of Ago2 over the brain endothelium, which reestablished glial and neuronal function. Conclusions Ago2 could be regarded as a putative therapeutic agent, or target, in the recuperation of the neurovascular unit in inflammatory conditions.

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Michael E Maniskas ◽  
Yun-ju Lai ◽  
Sean P Marrelli ◽  
Louise D McCullough ◽  
Jose F Moruno-manchon

Vascular contributions to cognitive impairment and dementia (VCID) includes multiple disorders that are identified by cognitive deficits secondary to cerebrovascular pathology. The risk of VCID is higher in people after the age of 70, and, currently, there is no effective treatment. Vascular endothelial cells (VEC) are critical components of the brain vasculature and neurovascular unit and their health is vital to the capacity of the brain vasculature to respond to stressors. However, aged VEC may enter an irreversible replicative-arrest state (senescence), which has been associated with dementia. E2F transcription factor 1 (E2F1) regulates cell cycle progression and DNA damage repair. Importantly, E2F1 deficiency is associated with cell senescence. We hypothesized that E2F1 downregulation contributes to senescence in the cerebral endothelium during aging. We used cultured primary VEC from young (4-months old, mo) and aged (18-mo) male and female mice for RNA sequencing, plasmid-based gene delivery, high-resolution microscopy, and (4-, 12-, and 18-mo) mice of the bilateral carotid artery stenosis (BCAS) model, which produces chronic cerebral hypoperfusion and recapitulates some of the features seen in patients with VCID. We found that overexpression of E2F1 reduced the levels of senescence-associated phenotypes in cultured VEC from young mice that were exposed to oxygen and glucose deprivation (p<0.001), which induces endothelial senescence. Our RNA seq data showed that the expression of E2f1 was reduced (~40%) in cultured primary VEC from aged mouse brains compared with young cells (p<0.001). E2F1 levels were reduced in the brains of aged mice. Interestingly, we found sex differences in E2F1 levels, with less protein levels (~30%) in males vs females (p<0.05), independently of age. Also, aged BCAS mice (1 month after surgery) had more severe senescence phenotypes, reduced cerebral blood flow, and worse memory deficits compared with control mice (p<0.05). The effect of BCAS was more prominent in aged mice compared with younger (4- and 12-mo) mice. In conclusion , our study identifies E2F1 as a potential regulator of endothelial senescence in mice and highlights the contribution of aging as an important factor in losing endothelial resilience.


Cell Calcium ◽  
2017 ◽  
Vol 66 ◽  
pp. 33-47 ◽  
Author(s):  
Estella Zuccolo ◽  
Dmitry Lim ◽  
Dlzar Ali Kheder ◽  
Angelica Perna ◽  
Paolo Catarsi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ankan Gupta ◽  
Kevin R. Rarick ◽  
Ramani Ramchandran

In this review, we discuss the state of our knowledge as it relates to embryonic brain vascular patterning in model systems zebrafish and mouse. We focus on the origins of endothelial cell and the distinguishing features of brain endothelial cells compared to non-brain endothelial cells, which is revealed by single cell RNA-sequencing methodologies. We also discuss the cross talk between brain endothelial cells and neural stem cells, and their effect on each other. In terms of mechanisms, we focus exclusively on Wnt signaling and the recent developments associated with this signaling network in brain vascular patterning, and the benefits and challenges associated with strategies for targeting the brain vasculature. We end the review with a discussion on the emerging areas of meningeal lymphatics, endothelial cilia biology and novel cerebrovascular structures identified in vertebrates.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaofan Yang ◽  
Huijuan Wang ◽  
Fan Hu ◽  
Xichen Chen ◽  
Mingshun Zhang

Abstract Background Cryptococcus neoformans (C. neoformans) is an encapsulated budding yeast that causes life-threatening meningoencephalitis in immunocompromised individuals, especially those with acquired immunodeficiency syndrome (AIDS). To cause meningoencephalitis, C. neoformans circulating in the bloodstream must first be arrested in the brain microvasculature. Neutrophils, the most abundant phagocytes in the bloodstream and the first leukocytes to be recruited to an infection site, can ingest C. neoformans. Little is known about how neutrophils interact with arrested fungal cells in the brain microvasculature. Methods A blood-brain barrier (BBB) in vitro model was established. The interactions between neutrophils adhering to brain endothelial cells and fungi were observed under a live cell imaging microscope. A flow cytometry assay was developed to explore the mechanisms. Immunofluorescence staining of brain tissues was utilized to validate the in vitro phenomena. Results Using real-time imaging, we observed that neutrophils adhered to a monolayer of mouse brain endothelial cells could expel ingested C. neoformans without lysis of the neutrophils or fungi in vitro, demonstrating nonlytic exocytosis of fungal cells from neutrophils. Furthermore, nonlytic exocytosis of C. neoformans from neutrophils was influenced by either the fungus (capsule and viability) or the neutrophil (phagosomal pH and actin polymerization). Moreover, nonlytic exocytosis of C. neoformans from neutrophils was recorded in brain tissue. Conclusion These results highlight a novel function by which neutrophils extrude C. neoformans in the brain vasculature. Graphical abstract


2017 ◽  
Vol 38 (4) ◽  
pp. 563-587 ◽  
Author(s):  
Imola Wilhelm ◽  
Csilla Fazakas ◽  
Kinga Molnár ◽  
Attila G Végh ◽  
János Haskó ◽  
...  

Despite the potential obstacle represented by the blood–brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 635
Author(s):  
Gergő Porkoláb ◽  
Mária Mészáros ◽  
András Tóth ◽  
Anikó Szecskó ◽  
András Harazin ◽  
...  

Inefficient drug delivery across the blood–brain barrier (BBB) and into target cells in the brain hinders the treatment of neurological diseases. One strategy to increase the brain penetration of drugs is to use vesicular nanoparticles functionalized with multiple ligands of BBB transporters as vehicles. Once within the brain, however, drugs must also be able to reach their therapeutic targets in the different cell types. It is, therefore, favorable if such nanocarriers are designed that can deliver their cargo not only to brain endothelial cells, but to other cell types as well. Here, we show that alanine-glutathione dual-targeting of niosomes enhances the delivery of a large protein cargo into cultured cells of the neurovascular unit, namely brain endothelial cells, pericytes, astrocytes and neurons. Furthermore, using metabolic and endocytic inhibitors, we show that the cellular uptake of niosomes is energy-dependent and is partially mediated by endocytosis. Finally, we demonstate the ability of our targeted nanovesicles to deliver their cargo into astroglial cells after crossing the BBB in vitro. These data indicate that dual-labeling of nanoparticles with alanine and glutathione can potentially be exploited to deliver drugs, even biopharmacons, across the BBB and into multiple cell types in the brain.


2017 ◽  
Vol 37 (7) ◽  
pp. 2598-2613 ◽  
Author(s):  
Piotr Siupka ◽  
Maria NS Hersom ◽  
Karin Lykke-Hartmann ◽  
Kasper B Johnsen ◽  
Louiza B Thomsen ◽  
...  

Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical–basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.


2020 ◽  
Author(s):  
Moheb Ghobrial ◽  
Jason Charish ◽  
Shigeki Takada ◽  
Taufik Valiante ◽  
Philippe P. Monnier ◽  
...  

ABSTRACTA large number of hospitalized COVID-19 patients show neurological symptoms such as ischemic- and hemorrhagic stroke as well as encephalitis, and SARS-CoV-2 can directly infect endothelial cells leading to endotheliitis across multiple vascular beds. These findings suggest an involvement of the brain- and peripheral vasculature in COVID-19, but the underlying molecular mechanisms remain obscure. To understand the potential mechanisms underlying SARS-CoV-2 tropism for brain vasculature, we constructed a molecular atlas of the expression patterns of SARS-CoV-2 viral entry-associated genes (receptors and proteases) and SARS-CoV-2 interaction partners in human (and mouse) adult and fetal brain as well as in multiple non-CNS tissues in single-cell RNA-sequencing data across various datasets. We observed a distinct expression pattern of the cathepsins B (CTSB) and -L (CTSL) - which are able to substitute for the ACE2 co-receptor TMPRSS2 - in the human vasculature with CTSB being mainly expressed in the brain vasculature and CTSL predominantly in the peripheral vasculature, and these observations were confirmed at the protein level in the Human Protein Atlas and using immunofluorescence stainings. This expression pattern of SARS-CoV-2 viral-entry associated proteases and SARS-CoV-2 interaction partners was also present in endothelial cells and microglia in the fetal brain, suggesting a developmentally established SARS-CoV-2 entry machinery in the human vasculature. At both the adult and fetal stages, we detected a distinct pattern of SARS-CoV-2 entry associated genes’ transcripts in brain vascular endothelial cells and microglia, providing a potential explanation for an inflammatory response in the brain endothelium upon SARS-CoV-2 infection. Moreover, CTSB was co-expressed in adult and fetal brain endothelial cells with genes and pathways involved in innate immunity and inflammation, angiogenesis, blood-brain-barrier permeability, vascular metabolism, and coagulation, providing a potential explanation for the role of brain endothelial cells in clinically observed (neuro)vascular symptoms in COVID-19 patients. Our study serves as a publicly available single-cell atlas of SARS-CoV-2 related entry factors and interaction partners in human and mouse brain endothelial- and perivascular cells, which can be employed for future studies in clinical samples of COVID-19 patients.


2021 ◽  
Author(s):  
Robert W. Robey ◽  
Andrea N. Robinson ◽  
Fatima Ali-Rahmani ◽  
Lyn M. Huff ◽  
Sabrina Lusvarghi ◽  
...  

ABSTRACTGiven its similarities with mammalian systems, the zebrafish has emerged as a potential model to study the blood-brain barrier (BBB). Capillary endothelial cells at the human BBB express high levels of P-glycoprotein (P-gp, encoded by the ABCB1 gene) and ABCG2 (encoded by the ABCG2 gene). However, little information has been available about ATP-binding cassette transporters expressed at the zebrafish BBB. In this study, we focus on the characterization and tissue localization of two genes that are similar to human ABCB1, zebrafish abcb4 and abcb5. Cytotoxicity assays with stably-transfected cell lines revealed that zebrafish Abcb5 cannot efficiently transport the substrates doxorubicin and mitoxantrone compared to human P-gp and zebrafish Abcb4. Additionally, zebrafish Abcb5 did not transport the fluorescent probes BODIPY-ethylenediamine or LDS 751, while they were readily transported by Abcb4 and P-gp. A high-throughput screen conducted with 90 human P-gp substrates confirmed that zebrafish Abcb4 has overlapping substrate specificity with P-gp. Basal ATPase activity of zebrafish Abcb4 and Abcb5 was comparable to that of human P-gp. In the brain vasculature, RNAscope probes to detect abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. Zebrafish abcb4 also colocalized with claudin-5 expression in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, consistent with different functions. The data suggest that zebrafish Abcb4 most closely phenocopies P-gp and that the zebrafish may be a viable model to study the role of the multidrug transporter P-gp at the BBB.


Sign in / Sign up

Export Citation Format

Share Document