scholarly journals Characterization of an ETV6-NTRK3 rearrangement with unusual, but highly significant FISH signal pattern in a secretory carcinoma of the salivary gland: a case report

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Florian Wagner ◽  
Ralf Greim ◽  
Kathrin Krebs ◽  
Finn Luebben ◽  
Arno Dimmler

Abstract Background Fusions of neurotrophic tropomyosin receptor kinase genes NTRK1, NTRK2 and NTRK3 with various partner genes occur in both common and rare tumours and are of paramount predictive value due to the availability of very effective pan-Trk inhibitors like Larotrectinib and Entrectinib. Detection of NTRK fusions is mainly performed by fluorescence in situ hybridization (FISH) and next generation sequencing (NGS). The case described here showed a very unusual, but highly significant FISH signal pattern with an NTRK3 break apart probe, indicative of a functional NTRK3 rearrangement. Case presentation We describe here the case of a male patient who was originally diagnosed with an adenocarcinoma of the parotid gland without evidence of metastases. After the development of multiple lung metastases, an extensive immunohistochemical and molecular examination of archived tumour tissue including analysis of NTRK was performed. NTRK expression was detected by immunohistochemistry (IHC) and then comprehensively analysed further by FISH, quantitative reverse transcription PCR (RT-qPCR), and NGS. NTRK3 break apart FISH showed multiple and very faint single 3′ signals in addition to fusion signals. Quantitative reverse transcription PCR and NGS confirmed an ETV6:exon5-NTRK3:exon15 fusion. Diagnosis was therefore revised to metastatic secretory carcinoma of the salivary gland, and the patient subsequently treated with Larotrectinib, resulting in persisting partial remission. Conclusions Our findings underline the importance to be aware of non-canonical signal patterns during FISH analysis for detection of NTRK rearrangements. Very faint single 3′ signals can indicate a functional NTRK rearrangement and therefore be of high predictive value.

2018 ◽  
Vol 19 (11) ◽  
pp. 3616 ◽  
Author(s):  
Rui Wang ◽  
Xiaoyan Deng ◽  
Chengfu Yuan ◽  
Hongmei Xin ◽  
Geli Liu ◽  
...  

The assembly and maintenance of cilia depend on intraflagellar transport (IFT) proteins, which play an important role in development and homeostasis. IFT80 is a newly defined IFT protein and partial mutation of IFT80 in humans causes diseases such as Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III, both characterized by abnormal skeletal development. However, the role and mechanism of IFT80 in the invasion of gastric cancer is unknown. We established SGC-7901 and MKN-45 gastric cancer cell lines that stably overexpressed IFT80, as verified by quantitative reverse transcription-PCR, Western blot, and immunofluorescence. Matrix metalloproteinase-9 (MMP9) plays an important role in tumor invasion, and its expression was assessed by quantitative reverse transcription-PCR, Western blotting, and immunofluorescence. The invasion ability of IFT80 on SGC-7901 and MKN-45 cells was examined by the Matrigel invasion assay. The relationship between p75NGFR, and the p75NGFR antagonists, PD90780 and IFT80, were detected by quantitative reverse transcription-PCR and Western blotting. We first detected an IFT80 expression pattern, and found that IFT80 was highly expressed in gastric cancer clinical samples. Overexpression of IFT80 in the gastric cancer cell lines, SGC-7901 and MKN-45, led to lengthening cilia. Additionally, overexpression of IFT80 significantly improved proliferation and invasion, but inhibited apoptosis, in gastric cancer cells. We further found that overexpression of IFT80 increased p75NGFR and MMP9 mRNA and protein expression. Treatment with the p75NGFR antagonist PD90780 inhibited the increased invasion ability resulting from overexpression of IFT80 in SGC-7901 and MKN-45 gastric cancer cells. Thus, these results suggest that IFT80 plays an important role in invasion of gastric cancer through regulating the ift80/p75NGFR/MMP9 signal pathways.


2010 ◽  
Vol 76 (17) ◽  
pp. 5676-5683 ◽  
Author(s):  
Ran Zhang ◽  
Shiyuan Peng ◽  
Zhongjun Qin

ABSTRACT Previous reports showed that Streptomyces linear plasmids usually contain one internal replication locus. Here, we identified two new replication loci on pFRL1, one (rep1A-ncs1) next to a telomere and another (rep2A-ncs2) ∼10 kb from it. The rep1A-ncs1 locus was able to direct replication independently in both linear and circular modes, whereas rep2A-ncs2 required an additional locus, rlrA-rorA, in order to direct propagation in linear mode. Rep1A protein bound to ncs1 in vitro. By quantitative reverse transcription-PCR and Northern hybridization, we showed that transcription of rep1A and rep2A varied during development and that each dominated at different time points. pFRL1-derived linear plasmids were inherited through spores more stably than circular plasmids and were more stable with pSLA2 telomeres than with pFRL1 telomeres in Streptomyces lividans.


2006 ◽  
Vol 73 (1) ◽  
pp. 15.8.1-15.8.28 ◽  
Author(s):  
Angie L. Bookout ◽  
Carolyn L. Cummins ◽  
David J. Mangelsdorf ◽  
Jean M. Pesola ◽  
Martha F. Kramer

Micromachines ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 63-79 ◽  
Author(s):  
Ravi Prakash ◽  
Kanti Pabbaraju ◽  
Sallene Wong ◽  
Anita Wong ◽  
Raymond Tellier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document