scholarly journals Beneficial effect of Indigo Naturalis on acute lung injury induced by influenza A virus

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Peng Tu ◽  
Rong Tian ◽  
Yan Lu ◽  
Yunyi Zhang ◽  
Haiyan Zhu ◽  
...  

Abstract Background Infections induced by influenza viruses, as well as coronavirus disease 19 (COVID-19) pandemic induced by severe acute respiratory coronavirus 2 (SARS-CoV-2) led to acute lung injury (ALI) and multi organ failure, during which traditional Chinese medicine (TCM) played an important role in treatment of the pandemic. The study aimed to investigate the effect of Indigo Naturalis on ALI induced by influenza A virus (IAV) in mice. Method The anti-influenza and anti-inflammatory properties of aqueous extract of Indigo Naturalis (INAE) were evaluated in vitro. BALB/c mice inoculated intranasally with IAV (H1N1) were treated intragastrically with INAE (40, 80 and 160 mg/kg/day) 2 h later for 4 or 7 days. Animal lifespan and mortality were recorded. Expression of high mobility group box-1 protein (HMGB-1) and toll-like receptor 4 (TLR4) were evaluated through immunohistological staining. Inflammatory cytokines were also monitored by ELISA. Result INAE inhibited virus replication on Madin-Darby canine kidney (MDCK) cells and decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated peritoneal macrophages in vitro. The results showed that oral administration of 160 mg/kg of INAE significantly improved the lifespan (P < 0.01) and survival rate of IAV infected mice, improved lung injury and lowered viral replication in lung tissue (P < 0.01). Treatment with INAE (40, 80 and 160 mg/kg) significantly increased liver weight and liver index (P < 0.05), as well as weight and organ index of thymus and spleen at 160 mg/kg (P < 0.05). Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were reduced by INAE administration (P < 0.05). The expression of HMGB-1 and TLR4 in lung tissue were also suppressed. The increased production of myeloperoxidase (MPO) and methylene dioxyamphetamine (MDA) in lung tissue were inhibited by INAE treatment (P < 0.05). Treatment with INAE reduced the high levels of interferon α (IFN-α), interferon β (IFN-β), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted factor (RANTES), interferon induced protein-10 (IP-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) (P < 0.05), with increased production of interferon γ (IFN-γ) and interleukin-10 (IL-10) (P < 0.05). Conclusion The results showed that INAE alleviated IAV induced ALI in mice. The mechanisms of INAE were associated with its anti-influenza, anti-inflammatory and anti-oxidation properties. Indigo Naturalis might have clinical potential to treat ALI induced by IAV.

2020 ◽  
Author(s):  
Peng Tu ◽  
Rong Tian ◽  
Yan Lu ◽  
Yunyi Zhang ◽  
Haiyan Zhu ◽  
...  

Abstract Background: Infections induced by influenza viruses, as well as coronavirus disease 19 (COVID-19) pandemic induced by severe acute respiratory coronavirus 2 (SARS-CoV-2) led to acute lung injury (ALI) and multi organ failure, during which traditional Chinese medicine (TCM) played an important role in treatment of the pandemic. The study aimed to investigate the effect of indigo naturalis on ALI induced by influenza A virus (IAV) in mice.Method: The anti-influenza and anti-inflammatory properties of aqueous extract of indigo naturalis (INAE) were evaluated in vitro. BALB/c mice inoculated intranasally with IAV (H1N1) were treated intragastrically with INAE (40, 80 and 160 mg·kg-1/d) 2 h later for 4 or 7 days. Animal lifespan and mortality were recorded. Expression of high mobility group box-1 protein (HMGB-1) and toll-like receptor 4 (TLR4) were evaluated through immunohistological staining. Inflammatory cytokines were also monitored by ELISA.Result: INAE inhibited virus replication on Madin-Darby canine kidney (MDCK) cells and decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated peritoneal macrophages in vitro. The results showed that oral administration of 160 mg/kg of INAE significantly improved the lifespan (P < 0.01) and survival rate of IAV infected mice, improved lung injury and lowered viral replication in lung tissue (P < 0.01). Treatment with INAE (40, 80 and 160 mg/kg) significantly increased liver weight and liver index (P < 0.05), as well as weight and organ index of thymus and spleen at 160 mg/kg (P < 0.05). Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were reduced by INAE administration (P < 0.05). The expression of HMGB-1 and TLR4 in lung tissue were also suppressed. The increased production of myeloperoxidase (MPO) and methylene dioxyamphetamine (MDA) in lung tissue were inhibited by INAE treatment (P < 0.05). Treatment with INAE reduced the high levels of interferon α (IFN-α), interferon β (IFN-β), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted factor (RANTES), interferon induced protein-10 (IP-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) (P < 0.05), with increased production of interferon γ (IFN-γ) and interleukin-10 (IL-10) (P < 0.05).Conclusion: The results showed that INae alleviated IAV induced ALI in mice. The effect of INAE might be related with its anti-influenza, anti-inflammatory and anti-oxidation properties, which give a hint that indigo naturalis might be effective on respiratory viruses infected acute lung injury or SAR-CoV-2 caused COVID-19.


2020 ◽  
Author(s):  
Peng Tu ◽  
Rong Tian ◽  
Yan Lu ◽  
Yunyi Zhang ◽  
Haiyan Zhu ◽  
...  

Abstract Background: Infections induced by influenza viruses, as well as coronavirus disease 19 (COVID-19) pandemic induced by severe acute respiratory coronavirus 2 (SARS-CoV-2) led to acute lung injury (ALI) and multi organ failure, during which traditional Chinese medicine (TCM) played an important role in treatment of the pandemic. The study aimed to investigate the effect of Indigo Naturalis on ALI induced by influenza A virus (IAV) in mice.Method: The anti-influenza and anti-inflammatory properties of aqueous extract of Indigo Naturalis (INAE) were evaluated in vitro. BALB/c mice inoculated intranasally with IAV (H1N1) were treated intragastrically with INAE (40, 80 and 160 mg·kg-1/d) 2 h later for 4 or 7 days. Animal lifespan and mortality were recorded. Expression of high mobility group box-1 protein (HMGB-1) and toll-like receptor 4 (TLR4) were evaluated through immunohistological staining. Inflammatory cytokines were also monitored by ELISA.Result: INAE inhibited virus replication on Madin-Darby canine kidney (MDCK) cells and decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated peritoneal macrophages in vitro. The results showed that oral administration of 160 mg/kg of INAE significantly improved the lifespan (P < 0.01) and survival rate of IAV infected mice, improved lung injury and lowered viral replication in lung tissue (P < 0.01). Treatment with INAE (40, 80 and 160 mg/kg) significantly increased liver weight and liver index (P < 0.05), as well as weight and organ index of thymus and spleen at 160 mg/kg (P < 0.05). Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were reduced by INAE administration (P < 0.05). The expression of HMGB-1 and TLR4 in lung tissue were also suppressed. The increased production of myeloperoxidase (MPO) and methylene dioxyamphetamine (MDA) in lung tissue were inhibited by INAE treatment (P < 0.05). Treatment with INAE reduced the high levels of interferon α (IFN-α), interferon β (IFN-β), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted factor (RANTES), interferon induced protein-10 (IP-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) (P < 0.05), with increased production of interferon γ (IFN-γ) and interleukin-10 (IL-10) (P < 0.05).Conclusion: The results showed that INAE alleviated IAV induced ALI in mice. The mechanisms of INAE were associated with its anti-influenza, anti-inflammatory and anti-oxidation properties. Indigo Naturalis might have clinical potential to treat ALI induced by IAV.


2020 ◽  
Author(s):  
Peng Tu ◽  
Rong Tian ◽  
Yan Lu ◽  
Yunyi Zhang ◽  
Haiyan Zhu ◽  
...  

Abstract Background: Infections induced by influenza viruses, as well as COVID-19 pandemic induced by SARS-CoV-2 led to Acute lung injury (ALI) and multiorgan failure, during which traditional Chinese medicine played an important role in treatment of the pandemic. The study aimed to investigate the effect of indigo naturalis on ALI induced by influenza A virus (IAV) in mice.Method: The anti-influenza and anti-inflammatory properties of aqueous extracts of indigo naturalis (INAE) were evaluated in vitro. BALB/c mice inoculated intranasally with IAV (H1N1) were treated intragastrically with INAE (40, 80 and 160 mg kg-1/d) 2 h later for 4 or 7 days. Animal mortality and lifespan were recorded. Expression of high mobility group box-1 protein (HMGB-1) and toll-like receptor-4 (TLR4) were evaluated through immunohistological staining. Inflammatory cytokines were also monitored by ELISA.Result: INAE inhibited virus growth on Madin-Darby canine kidney (MDCK) cells and decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated peritoneal macrophage in vitro. The results showed that oral administration of 160 mg/kg of INAE significantly improved the lifespan (P < 0.01) and survival rate of IAV infected mice, improved lung injury and lowered viral replication in lung tissue (P < 0.01). Treatment with INAE (40, 80 and 160 mg/kg) also significantly increased liver weight and liver index (P < 0.05), as well as spleen and thymus weight and organ index at 160 mg/kg (P < 0.05). The expression of HMGB-1 and TLR4 in lung tissue were also suppressed. Treatment with INAE reduced the high levels of interferon α (IFN-α), interferon β (IFN-β), interferon γ (IFN-γ), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted factor (RANTES), interferon induced protein-10 (IP-10), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) (P < 0.05), with increased production of interleukin-10 (IL-10) (P < 0.05). The increased myeloperoxidase (MPO) activity and methylene dioxyamphetamine (MDA) level in lung tissues were inhibited by INAE treatment (P < 0.05).Conclusion: The results showed that INae alleviated IAV induced ALI in mice. The effect of INAE might be related with its anti-virus, anti-inflammatory and anti-oxidation properties, which give a hint that indigo naturalis might be effective on respiratory viruses infected acute lung injury or SAR-CoV-2 caused COVID-19.


2021 ◽  
Author(s):  
Wendi Yu ◽  
Maoseng Zeng ◽  
Jinyuan Liu ◽  
Huixian Wang ◽  
peiping xu

Abstract Integrin αvβ3 is a heterodimer formed by αv and β3 subunits that is expressed in pulmonary endothelial cells, alveolar epithelial cells, interstitial cells and macrophages. Integrin αvβ3 not only has a common role of integrin family molecules in inflammation and tissue fibrosis, but also mediates the adsorption and penetration of various viruses into susceptible cells. Nevertheless, there are few studies on the effect of αvβ3 on acute lung injury (ALI) induced by influenza virus and its mechanism. Here, the effects of αvβ3 blockade [Cyclo(RGDyK)] against ALI induced by influenza A virus (IAV) in vitro and in vivo and its possible mechanism were studied. A549 cells and mice were infected with influenza virus A/FM/1/47 to induce ALI in vitro and in vivo. The results showed that Cyclo(RGDyK) reduced the ALI induced by IAV, alleviated pulmonary edema, improved lung histopathological changes and alleviated the accumulation of inflammatory cells in the lung. Cyclo(RGDyK) had inhibitory effect on cells and mice infected by IAV. Cyclo(RGDyK) (150 µg/kg) showed effective antiviral activity in vivo. Cyclo(RGDyK) had 70% protective effect against IAV and effectively reduced virus titer and inflammation in lung tissue. Cyclo(RGDyK) exhibited significantly anti-inflammatory and anti-fibrotic effect on improving the pneumonia and degree of pulmonary fibrosis and reducing the levels of pulmonary fibrotic markers (LN, HA, PCIII, IV-C, TGF-β1, and α-SMA). Additionally, Cyclo(RGDyK) inhibited expression of αvβ3,TGF-β1, HIF-1α, NF-κB, and p38 MAPK in the cells and mice lung tissues. The results showed that Cyclo(RGDyK) had a protective effect on ALI in mice infected with IAV and inhibited the progress of lung inflammation and fibrosis, which may be concern with its regulation of αvβ3/TGF-β1/HIF-1α signaling pathway.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Rufeng Lu ◽  
Yueguo Wu ◽  
Honggang Guo ◽  
Zhuoyi Zhang ◽  
Yuzhou He

Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.


2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


2017 ◽  
Vol 12 (4) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Ratika Rahmasari ◽  
Takahiro Haruyama ◽  
Siriwan Charyasriwong ◽  
Tomoki Nishida ◽  
Nobuyuki Kobayashi

Influenza A viruses are responsible for annual epidemics and occasional pandemics, which cause significant morbidity and mortality. The limited protection offered by influenza vaccination, and the emergence of drug-resistant influenza strains, highlight the urgent need for the development of novel anti-influenza drugs. However, the search for antiviral substances from the library of low molecular weight chemical compounds is limited. Thus, because of their natural diversity and accessibility, plants or plant-derived materials are rapidly becoming valuable sources for the discovery and development of new antiviral drugs. In this study, crude extracts of Aspalathus linearis, a plant reported to have anti-HIV activity, were evaluated in vitro for their activity against the influenza A virus. Of the extracts tested, an alkaline extract of Aspalathus linearis demonstrated the strongest inhibition against influenza A virus and could also inhibit different types of influenza viruses, including Oseltamivir-resistant influenza viruses A and B. Our time course of addition studies indicated that the alkaline extract of Aspalathus linearis exerts its antiviral effect predominantly during the late stages of the influenza virus replication process.


Sign in / Sign up

Export Citation Format

Share Document