scholarly journals Veronicastrum axillare Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Suppression of Proinflammatory Mediators and Downregulation of the NF-κB Signaling Pathway

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.

Inflammation ◽  
2021 ◽  
Author(s):  
Yuhan Liu ◽  
Luorui Shang ◽  
Jiabin Zhou ◽  
Guangtao Pan ◽  
Fangyuan Zhou ◽  
...  

Abstract—Emodin, the effective component of the traditional Chinese medicine Dahuang, has anti-inflammatory effects. However, the protective effects and potential mechanisms of emodin are not clear. This study investigated the protective effects and potential mechanisms of emodin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in vitro and in vivo. In vivo, we designed an LPS-induced ALI rat model. In vitro, we chose the J774A.1 cell line to establish an inflammatory cellular model, and knocked down NOD-like receptor family pyrin domain containing 3 (NLRP3) using small interfering RNA. The mRNA and protein expression of NLRP3, a C-terminal caspase recruitment domain (ASC), caspase 1 (CASP1), and gasdermin D (GSDMD) in cells and lung tissues were detected by western blot and real-time quantitative polymerase chain reaction (PCR). The expression levels of interleukin 1 beta (IL-1β) and IL-18 in the serum and supernatant were determined by the enzyme-linked immunosorbent assay. The degree of pathological injury in lung tissue was evaluated by hematoxylin and eosin (H&E) staining. In vitro, we demonstrated that emodin could inhibit NLRP3 and then inhibit the expression of ASC, CASP1, GSDMD, IL-1β, and IL-18. In vivo, we confirmed that emodin had protective effects on LPS-induced ALI and inhibitory effects on NLRP3 inflammasome -dependent pyroptosis. Emodin showed excellent protective effects against LPS-induced ALI by regulating the NLRP3 inflammasome-dependent pyroptosis signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-qi Ren ◽  
Hui-jun Wang ◽  
Hai-yan Zhu ◽  
Guan Ye ◽  
Kun Li ◽  
...  

Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism.Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry.Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway.Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiyue Zhang ◽  
Li Du ◽  
Jinrong Zhang ◽  
Chunyan Li ◽  
Jie Zhang ◽  
...  

Acute lung injury (ALI) is a respiratory disease that leads to death in severe cases. Hordenine (Hor), a barley-derived natural product, has various biological activities, including anti-inflammatory, and anti-oxidation activities. We investigated the effect of Hor on lipopolysaccharide-induced ALI and its potential mechanism. The anti-inflammatory effects of Hor were detected using in vivo and in vitro models by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blotting, and molecular docking simulations. Hor inhibited increases in the levels of inflammatory factors both in vivo and in vitro, and its anti-inflammatory effect inhibited activation of protein kinase B, nuclear factor-κB, and mitogen-activated protein kinase signaling. Hor alleviated lipopolysaccharide-induced ALI by inhibiting inflammatory cytokine increases in vivo and in vitro and shows potential for preventing inflammatory disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Qiong He ◽  
Can-Can Zhou ◽  
Jiu-Ling Deng ◽  
Liang Wang ◽  
Wan-Sheng Chen

Acute lung injury (ALI) is a common life-threatening lung disease, which is mostly associated with severe inflammatory responses and oxidative stress. Tanreqing injection (TRQ), a Chinese patent medicine, is clinically used for respiratory-related diseases. However, the effects and action mechanism of TRQ on ALI are still unclear. Recently, STING as a cytoplasmic DNA sensor has been found to be related to the progress of ALI. Here, we showed that TRQ significantly inhibited LPS-induced lung histological change, lung edema, and inflammatory cell infiltration. Moreover, TRQ markedly reduced inflammatory mediators release (TNF-α, IL-6, IL-1β, and IFN-β). Furthermore, TRQ also alleviated oxidative stress, manifested by increased SOD and GSH activities and decreased 4-HNE, MDA, LDH, and ROS activities. In addition, we further found that TRQ significantly prevented cGAS, STING, P-TBK, P-P65, P-IRF3, and P-IκBα expression in ALI mice. And we also confirmed that TRQ could inhibit mtDNA release and suppress signaling pathway mediated by STING in vitro. Importantly, the addition of STING agonist DMXAA dramatically abolished the protective effects of TRQ. Taken together, this study indicated that TRQ alleviated LPS-induced ALI and inhibited inflammatory responses and oxidative stress through STING signaling pathway.


2021 ◽  
Vol 17 (7) ◽  
pp. 1273-1283
Author(s):  
Chuanyu Zhuang ◽  
Chunxian Piao ◽  
Myoungjee Choi ◽  
Junkyu Ha ◽  
Minhyung Lee

Acute lung injury (ALI) is an inflammatory lung disease. miRNA-92a (miR92a) is induced in the lungs of ALI patients and mediates inflammatory reactions. In this study, a RP1-linked R3V6 (RP1R3V6) peptide was synthesized and evaluated as a carrier of anti-microRNA-92a oligonucleotide (AMO92a) into the lungs of an ALI animal model. In addition to the carrier function, the RP1-linked peptide can have anti-inflammatory effects in the lungs, since RP1 is an antagonist of the receptors for advanced glycation end-products (RAGEs). In a gel retardation assay, the RP1R3V6 peptide formed a spherical complex with AMO92a. In an in vitro delivery assay to L2 rat lung epithelial cells, RP1R3V6 had a lower AMO92a delivery efficiency than R3V6 and polyethyleneimine (PEI25k; 25 kDa). However, RP1R3V6 had an additional anti-inflammatory effect, reducing tumor necrosis factor-α (TNF-α) in lipopolysaccharide-activatedmacrophage cells. With the combined effects of AMO92a and RP1, the RP1R3V6/AMO92a complex reduced the miR92a level more efficiently than did the R3V6/AMO92a and PEI25k/AMO92a complexes. The RP1R3V6/AMO92a complex was administered into the lungs of ALI animals by intratracheal instillation. As a result, the expression of phosphatase and tensin homolog, a target of miR92a, was increased in the lungs. Furthermore, the RP1R3V6/AMO92a complex decreased the TNF-α and interleukin-1β (IL-1β) levels more efficiently than did the PEI25k/AMO92a and R3V6/AMO92a complexes, decreasing the damage in the lungs. These results suggest that RP1R3V6 is a useful carrier of AMO92a and has anti-inflammatory effects in an ALI animal model.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Aijun Sun ◽  
Weiheng Wang ◽  
Xiaojian Ye ◽  
Yang Wang ◽  
Xiangqun Yang ◽  
...  

Objective. The aim of this research is to evaluate the protective effects of methane-rich saline (MS) on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) and investigate its potential antioxidative, anti-inflammatory, and antiapoptotic activities. Methods. LPS-induced (20 mg/kg) ALI rats were injected with MS (2 ml/kg and 20 ml/kg) before the initiation of LPS induction. Survival rate was determined until 96 h after LPS was induced. Lung injury was assayed by oxygenation index, lung permeability index (LPI), wet-to-dry weight (W/D), and histology. The cells in the bronchoalveolar lavage fluid (BALF) were counted. Oxidative stress was examined by the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in BALF were determined by ELISA. Lung tissue apoptosis was detected by TUNEL staining and western blotting of caspase-3. Results. It was found that methane significantly prolonged the rat survival, decreased the lung W/D ratio and the content of the inflammatory factors, and reduced the amount of caspase-3 and apoptotic index. In addition, MS increased the level of SOD and decreased the level of MDA significantly. Conclusions. MS protects the LPS-challenged ALI via antioxidative, anti-inflammatory, and antiapoptotic effect, which may prove to be a novel therapy for the clinical management of ALI.


2017 ◽  
Vol 34 ◽  
pp. 181-188 ◽  
Author(s):  
Heung Joo Yuk ◽  
Jae Won Lee ◽  
Hyun Ah Park ◽  
Ok-Kyoung Kwon ◽  
Kyeong-Hwa Seo ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2575-2590 ◽  
Author(s):  
Gang Zhong ◽  
Ruiming Liang ◽  
Jun Yao ◽  
Jia Li ◽  
Tongmeng Jiang ◽  
...  

Background/Aims: Current drug therapies for osteoarthritis (OA) are not practical because of the cytotoxicity and severe side-effects associated with most of them. Artemisinin (ART), an antimalarial agent, is well known for its safety and selectivity to kill injured cells. Based on its anti-inflammatory activity and role in the inhibition of OA-associated Wnt/β-catenin signaling pathway, which is crucial in the pathogenesis of OA, we hypothesized that ART might have an effect on OA. Methods: The chondro-protective and antiarthritic effects of ART on interleukin-1-beta (IL-1β)-induced and OA patient-derived chondrocytes were investigated in vitro using cell viability assay, glycosaminoglycan secretion, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western blotting. We also used OA model rats constructed by anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx) in the joints to investigate the effects of ART on OA by gross observation, morphological staining, immunohistochemistry, and enzyme-linked immunosorbent assay. Results: ART exhibited potent anti-inflammatory effects by inhibiting the expression of proinflammatory chemokines and cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor alpha, and matrix metallopeptidase-13. It also showed favorable chondro-protective effect as evidenced by enhanced cell proliferation and viability, increased glycosaminoglycan deposition, prevention of chondrocyte apoptosis, and degeneration of cartilage. Further, ART inhibited OA progression and cartilage degradation via the Wnt/β-catenin signaling pathway, suggesting that it might serve as a Wnt/β-catenin antagonist to reduce inflammation and prevent cartilage degradation. Conclusion: In conclusion, ART alleviates IL-1β-mediated inflammatory response and OA progression by regulating the Wnt/β-catenin signaling pathway. Thereby, it might be developed as a potential therapeutic agent for OA.


2021 ◽  
Author(s):  
Jinju Li ◽  
Rongge Shao ◽  
Qiuwen Xie ◽  
XueKe Du

Abstract Purpose:Ulinastatin (UTI) is an endogenous protease inhibitor with potent anti-inflammatory, antioxidant and organ protective effects. The inhibitor has been reported to ameliorate inflammatory lung injury but precise mechanisms remain unclear. Methods: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). The number of neutrophils and the phagocytosis of apoptotic neutrophils were observed by Diff- Quick method. Lung injury was observed by HE staining .BALF cells were counted by hemocytometer and concentrations of protein plus inflammatory factors were measured with a BCA test kit. During in vitro experiments, RAW264.7 cells were pretreated with UTI (1000 and 5000U/ mL), stained with CellTrackerTM Green B0DIPYTM and HL60 cells added with UV-induced apoptosis and PKH26 Red staining. The expression of ERK5\Mer related proteins was detected by western blot and immunofluorescence.Results: An in vivo model of lung injury has been constructed by intratracheal infusion of lipopolysaccharide (LPS). UTI treatment enhanced the phagocytotic effect of mouse alveolar macrophages on neutrophils, alleviated lung lesions, decreased the pro-inflammatory factor and total protein content of BALF and increased levels of anti-inflammatory factors. in vitro experiments ,UTI enhanced the phagocytosis of apoptotic bodies by RAW264.7 cells in a dose-dependent manner. Increased expression levels of ERK5 and Mer by UTI were shown by Western blotting and immunofluorescence.Conclusions: UTI mediated the activation of the ERK5/Mer signaling pathway, enhanced phagocytosis of neutrophils by macrophages and improved lung inflammation. The current study indicates potential new clinical approaches for accelerating the recovery from lung inflammation.


Sign in / Sign up

Export Citation Format

Share Document